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ABSTRACT 

Let G = (V;E) be a simple connected graph. The sets of vertices and edges of G are denoted by 

V = V(G) and E = E(G), respectively. In such a simple molecular graph, vertices represent atoms and 

edges represent bonds. The distance between the vertices u and v in V(G) of graph G is the number of 

edges in a shortest path connecting them, we denote by d(u,v). In graph theory, we have many 

invariant polynomials for a graph G. In this research, we computing the Schultz polynomial, Modified 

Schultz polynomial, Hosoya polynomial and their topological indices of a Hydrocarbon molecule, that 

we call “Coronene Polycyclic Aromatic Hydrocarbons”. 
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1.  INTRODUCTION 

 

Let G be a connected graph. The vertex-set and edge-set of G denoted by V(G) and E(G) 

respectively, such that in the connected molecular graph G, vertices represent atoms and edges 

represent bonds. In graph theory, the degree of a vertex vV(G) is the number of vertices 

joining to v and denoted by dv(G) (or simpely dv). If e is an edge of G, connecting the vertices 

u and v, then we write e = uv. Also d(u,v) = d(u,v|G) is the distance between vertices u and v 

is equal to the length of the shortest path that connects them in G.  

In chemical graph theory, we have invariant polynomials and topological indices for any 

molecular graphs. Such that topological indices of molecular graphs and nanostructures are 

numerical descriptors that are derived from graph of chemical compounds. Such indices based 

on the distances in graph are widely used for establishing relationships between the structure 

of molecular graphs and their physicochemical properties.  

Usage of topological indices in Biology and Chemistry began in 1947 when chemist 

Harold Wiener [1] introduced Wiener index to demonstrate correlations between physico-



International Letters of Chemistry, Physics and Astronomy 13(1) (2014) 1-10                                                                                                                              

2 

chemical properties of organic compounds of molecular graphs. Wiener originally defined his 

index (W) on trees and studied its use for correlations of physico-chemical properties of 

alkanes, alcohols, amines and their analogous compounds [2]. 

The Wiener index of a graph G is denoted by W(G) and defined as the sum of distances 

between all pairs of vertices in simple graph G: 

 

   
  v V G V G

1
,

2 u

W G d v u
 

    

 

where, d(u,v) is the distance between vertices u and v. 

On based the Wiener index, H. Hosoya introduced the Wiener polynomial (or new 

Hosoya polynomial) in 1988 [3]. 

The Hosoya polynomial H(G,x) is defined as: 

 

   

  

,

v V G V G

1
,

2

d v u

u

H G x x
 

    

 

Another based structure descriptors is Schultz index, the Schultz index (Sc) was 

introduced by Harry P. Schultz in 1989 [4-6], as the “molecular topological index” and it is 

defined by: 

 

 
 {u,v} V G

1
G ( ) ( , )

2
u vSc d d d u v



 
 

 

where du and dv are degrees of vertices u and v. 

On based the Schultz index S. Klavžar and I. Gutman introduced the Modified Schultz 

index in 1997 [7-9] and defined as: 

 

 
 

 *

{u,v} V G

1
G ( , )

2
u vSc d u v d d



 
 

 

In chemical graph theory, there are two important polynomials for these structure 

descriptors and “Schultz polynomial“ and “Modified Schultz polynomial” of G are defined 

respectively as: 

 

 
 

( , )

{u,v} V G

1
G,x ( )

2

d u v

u vSc d d x


   

 
 

* ( , )

{u,v} V G

1
G,x ( )

2

d u v

u vSc d d x


 
 

 

These based structure descriptors and their polynomials studied and computed in many 

papers [7-35] and also the Hosoya polynomial and Wiener index of some molecular graph 

computed [7,12,13,23,36-43]. In this research, we computing the Schultz polynomial, 
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Modified Schultz polynomial, Hosoya polynomial and their topological indices of a 

Hydrocarbon molecule, that we call “Coronene Polycyclic Aromatic Hydrocarbons”. 

 

 

2.  RESULTS AND DISCUSSION 
 

In chemical, physics and nano sciences, we have the appealing structure, especially 

symmetric structure with chemical constitution purporting. One of the molecular graphs is 

Benzenoid System. Since molecule benzene (C6H6) is more practical in the chemical, physics 

and nano science, we lionize its structure.  

In this section we compute structure descriptors and their polynomials of a family of 

Coronene Polycyclic Aromatic Hydrocarbons (Figure 1). Coronene PAH2 is second members 

of Polycyclic Aromatic Hydrocarbon molecules. Polycyclic aromatic hydrocarbons PAHn 

family have very similar properties to one of famous family of Benzenoid System that called 

Circumcoronene Homologous Series of Benzenoid Hk. Polycyclic Aromatic Hydrocarbons 

and Circumcoronene Series of Benzenoid are two families of hydrocarbon molecules, such 

that their structure is consisting of Benzene C6H6 or cycles with length six C6 by defferent 

componds. In a series of papers, some properties and more historical details of hydrocarbon 

molecules are studed [44-57] and some applications of Benzenoid system are presented in 

many papers [58-74]. 

By focus on the structure of Coronene Polycyclic Aromatic Hydrocarbons PAH2 (or 

C24H12) and definitions of Schultz polynomial, Modified Schultz polynomial, Hosoya 

polynomial and their topological indices, we have following theorems. 

 

Theorem 1. Let PAH2 be the secobd members of Polycyclic Aromatic Hydrocarbons 

(PAHs). Then  

 The Schultz polynomial of PAH2 is equal to: 

 

Sc(PAH2,x)=228x
1
+384x

2
+498x

3
+528x

4
+486x

5
+384x

6
+276x

7
+132x

8
+24x

9 

 

 The Modified Schultz polynomial of PAH2 is equal to: 

 

Sc*(PAH2,x)=306x
1
+504x

2
+627x

3
+636x

4
+561x

5
+420x

6
+258x

7
+90x

8
+12x

9 

 

 Hosoya polynomial of PAH1 is equal to 

 

H(PAH2,x) = 42x
1
+72x

2
+99x

3
+108x

4
+105x

5
+84x

6
+66x

7
+42x

8
+12x

9
 

 

Theorem 2. Consider Coronene Polycyclic Aromatic Hydrocarbons PAH2. Then 

respectively, the Schultz, Modified Schultz and Wiener indices of PAH2 are equal to:  

 

Sc(PAH2) = 12540 

Sc*(PAH2) = 13698 

W(PAH2) = 2850 
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Proof of Theorem 1: Consider Coronene Polycyclic Aromatic Hydrocarbons PAH2. By 

according to Figure1, one can see that PAH2 have 24 carbon (C) atoms and 12 hydrogen (H) 

atoms. Since C24H12 have 36 verices/atoms, thus there are 630 =  36

2  distinct shortest path 

between all vertices of PAH2.  

 

 
 

Figure 1. Benzene molecules C6H6 and Coronene Polycyclic Aromatic Hydrocarbons PAH2. 

 

 

Now, for a graph G, let Ds(G) = {{u,v}V(G)| d(u,v) = s} is set of all pairs of vertices 

with distance s, such that |Ds(G)| = d(G,s). Suppose the diameter d(G) is the longest 

topological distance (maximum s) in G. Thus, the Hosoya polynomial and the Wiener index 

of G are redefined as: 

 

H(G,x)=

( )

0

( , ).
d G

s

s

d G s x


  

W(G)=

( )

0

( , ).
d G

s

d G s s


  

 

and also the Schultz and Modified Schultz polynomials of G can be defined as: 

 

Sc(G,x)=  
 

{u,v} D
1

1

2
s

d G s

u v
s

d d x


  

Sc
*
(G,x)=  

 
{u,v} D

1

1

2
s

d G s

u v
s

d d x


  

 

By according to Figure1, one can see that there are nine subsets of V(G). In other words, 

V(G) = 9

1s
Ds(G) and obviously |D1|+|D2|+..+|D9| = 630.  
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Now, by definition of Ds(G), it is easy to see that for d(u,v) = 1, D1(PAH2) = E(PAH2), 

then |D1| = 42 and is equal to |E(PAH2)|. From E(PAH2), we see that for 12 hydrogen (H) 

atoms |D1
HC

| = |{(u,v)|u,vV(PAH2), d(u,v) = 1 & du+dv = 4, du×dv = 3}| = 12. So, we have 

three sentences 12x
1
, 48x

1
 and 36x

1
 of the Hosoya, Schultz and Modified Schultz 

polynomials, respectively. And for carbon (C) atoms: 

 

|D1
CC

|
 
= |{(u,v)|u,vV(PAH2), d(u,v) = 1 & du+dv=6, du×dv = 9}| = 30. 

 
Thus, we have three terms 30x

1
, 180x

1
, 270x

1 
of the above polynomials, respectively. 

Therefore, we have three frist sentences 42x
1
, 228x

1
 and 306x

1
 of the Hosoya, Schultz 

and Modified Schultz polynomials, respectively.  

Now, suppose d(u,v)=2, D2(PAH2) have two partitions as follows: 

 

1. For carbon atoms:  

|D2
CC

| = |{(u,v)| u,vV(PAH2), d(u,v) = 2 & du+dv = 6, du×dv = 9}| = 48. 

2. For hydrogen atoms:  

|D2
HC

| = |{(u,v)| u,vV(PAH2), d(u,v) = 2 & du+dv = 4, du×dv = 3}| = 2×12. 

Hence, we have three terms 48x
2
+24x

2
, 288x

2
+96x

2
, 432x

2
+72x

2 
of the Hosoya, Schultz 

and Modified Schultz polynomials, respectively. 

Now, If d(u,v) = 3, then |D3(PAH2)| = 99 and there are three subsets of it.  

1. For hydrogen (H) atoms:  

|D3
HH

| = |{(u,v)|u,vV(PAH2), d(u,v) = 3 & du+dv = 2, du×dv = 1}| = 6. 

2. For paths between carbon and hydrogen atoms as distance 3:  

|D3
CH

| = |{(u,v)|u,vV(PAH2), d(u,v) = 3 & du+dv = 4, du×dv = 3}| = 3×12. 

3. For carbon atoms:  

|D3
CC

| = |{(u,v)|u,vV(PAH2), d(u,v) = 3 & du+dv = 6, du×dv = 9}| = 57. 

So, we have three sentences 6x
3
+36x

3
+57x

3
, 12x

3
+144x

3
+342x

3
 and 6x

3
+108x

3
+513x

3
 

of the Hosoya, Schultz and Modified Schultz polynomials of PAH2, respectively.  

If d(u,v) = 4, then |D4(PAH2)| = 108 and we have three subsets of D4 of PAH2 as  

1. For hydrogen (H) atoms:  

|D4
HH

| = |{(u,v)|u,vV(PAH2), du+dv = 2, du×dv = 1}| = 6. 

2. For paths between carbon and hydrogen atoms:  

|D4
CH

| = |{(u,v)|u,vV(PAH2), du+dv = 4, 

du×dv = 3}| = 4×12. 

3. For carbon atoms:  

|D4
CC

| = |{(u,v)|u,vV(PAH2), d(u,v) = 4 & du+dv = 6, du×dv = 9}| = 54. 

Generally, we will have three sentences 6x
4
+48x

4
+54x

4
, 12x

4
+192x

4
+324x

4
 and 

6x
4
+144x

4
+486x

4 
of the Hosoya, Schultz and Modified Schultz polynomials.  
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For d(u,v) = 5, |D5(PAH2)| = |{(u,v)|u,vV(PAH2), d(u,v) = 5}| = 105, therefore 

1. For hydrogen atoms:  

|D5
HH

| = |{(u,v)|u,vV(PAH2), d(u,v) = 5 & du+dv=2, du×dv = 1}| = 12. 

2. For paths between C and H atoms:  

|D5
CH

| = |{(u,v)|u,vV(PAH2), d(u,v) = 5& du+dv = 4, du×dv = 3}| = 48. 

3. For carbon atoms:  

|D5
CC

| = |{(u,v)|u,vV(PAH2), d(u,v) = 5 & du+dv = 6, du×dv = 9}| = 45. 

So, 12x
5
+48x

5
+45x

5
, 24x

5
+192x

5
+270x

5
 and 12x

5
+144x

5
+405x

5
 are three terms of the 

Hosoya, Schultz and Modified Schultz polynomials of PAH2, respectively. 

If d(u,v) = 6 or 7, then |D6(PAH2)| = 84 and |D7(PAH2)| = 66, thus we have three 

subsets of D6 and D7 simillary as follow: 

1. For hydrogen (H) atoms:  

|D6
HH

| = |D7
HH

| = |{(u,v)|u,vV(PAH2), d(u,v) = 6 & du+dv = 2, du×dv = 1}| = 6. 

2. For paths between carbon and hydrogen atoms: 

|D6
CH

| = |D7
HH

| = |{(u,v)|u,vV(PAH2),du+dv = 4, du×dv = 3}| = 4×12. 

3. For carbon atoms: | 

D6
CC

| = |{(u,v)|u,vV(PAH2), d(u,v) = 6 & du+dv = 6, du×dv = 9}| = 30   

and |D7
CC

| = 12. 

So, we have three terms (6+48+30)x
6
+(6+48+12)x

7
, (12+192+180)x

6
+(12+192+72)x

7
 

and (6+144+270)x
6 

+(6+144+108)x
7
 of the Hosoya, Schultz and Modified Schultz 

polynomials of PAH2, respectively.  

 

Now, If d(u,v) = 8, then |D8(PAH2)| = 42 and since there is not any path between carbon 

atoms, thus two subsets of D8(PAH2) are as follow: 

1. For H atoms: 

|D8
HH

| = |{{u,v}V(PAH2)|d(u,v) = 8 & du+dv = 2, du×dv = 1}| = 18. 

2. For paths between C and H atoms:  

|D8
CH

| = |{{u,v}V(PAH2)|du+dv=4, du×dv = 3}| = 2×12. 

And we have three sentences 18x
8
+24 x

8
, 36x

8
+96x

8
 and 18x

8
+72x

8
 of the Hosoya, 

Schultz and Modified Schultz polynomials, respectively. 

Finally for d(u,v) = 9, |D9(PAH2)| = |{(u,v)|u,vV(PAH2), d(u,v) = 9& du+dv = 2, du×dv 

= 1}| = |D9
HH

| = 12. Therefore last sentences in above polynomials is 12x
9
, 24x

9
 and 12x

9,
 

respectively. 

Thus totally, the Hosoya polynomial of Coronene Polycyclic Aromatic Hydrocarbons 

PAH2 is equal to: 

 

H(PAH2,x) = 42x
1
+72x

2
+99x

3
+108x

4
+105x

5
+84x

6
+66x

7
+42x

8
+12x

9
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and the Schultz polynomial of PAH2 is equal to: 

 

Sc(PAH2,x)=228x
1
+384x

2
+498x

3
+528x

4
+486x

5
+384x

6
+276x

7
+132x

8
+24x

9
 

 

In finally, the Modified Schultz polynomial of PAH2 is equal to:
 

 

Sc*(PAH2,x)=306x
1
+504x

2
+627x

3
+636x

4
+561x

5
+420x

6
+258x

7
+90x

8
+12x

9
 

 

Here, we complete the proof of Theorem 1. 

 

Proof of Theorem 2: Let PAH2 be the second member of Polycyclic Aromatic 

Hydrocarbons. By using the dfinitions of the Schultz, Modified Schultz and Wiener indices of 

a graph and reference to Proof of Theorem 1, we will have 

 

Sc(PAH2) = 
 2

1

,x

x

Pc HS A

x





 

= (228×1)+(384×2)+(498×3)+(528×4)+(486×5)+(384×6)+ 

(276×7)+(132×8)+(24×9) = 12540 
 

and Sc*(PAH2) = 
 2

*

1

,x

x

P HSc A

x





 

= (306×1)+(504×2)+(627×3)+(636×4)+(561×5)+(420×6)+ 

(258×7)+(90×8)+(12×9) = 13698 
 

And finally the Wiener index of of Coronene Polycyclic Aromatic Hydrocarbons PAH2 

is equal to: 

 

W(PAH2)=
2( )

2

1

. ( , )
d PAH

s

i d PAH s


  = (42×1)+(72×2)+(99×3)+(108×4)+(105×5) 

+(84×6)+(66×7)+(42×8)+(12×9) = 2850 
 

Here, the proof of Theorem 2 is complete. 

 

 

3.  CONCLUSION 

 

In this paper, counting polynomials called ”Schultz  
 {u,v} V G

1
G ( ) ( , ),

2
u vSc d d d u v



   

Modified Schultz  
 

 *

{u,v} V G

1
G ( , )

2
u vSc d u v d d



   and Hosoya 
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   

  

,

v V G V G

1
,

2

d v u

u

H G x x
 

   ” of Coronene Polycyclic Aromatic Hydrocarbons PAH2 were 

determined. See above theorems. 
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