PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cold Energy Utilization by Stirling Engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Liquefied natural gas (LNG) will play an important role in the World, as evidenced by the constantly growing LNG market. One of its branches is the small-scale LNG market, which includes supplies to satellite gas networks, factories, or as fuel for car and bunker, fuel for vessels. LNG is mainly redistributed by trucks and then regassify in atmospheric air vaporizes (AAV), where the gas is heated by atmospheric air and the cold is thereby lost. Effective utilization of this energy, will allow the LNG technology to be more competitive, as well as to recover some of the energy lost in the liquefaction process. The purpose of this article is to explore the possibility of utilizing the cold energy from the LNG regasification process to drive a Stirling engine. For the aim of this analysis, an analytical method were used - Schmidt analysis, which assumes an isothermal processes of gas expansion and compression inside the engine, as well as excellent regenerator performance. Helium was used as a working factor. It was assumed, that the engine was arranged in accordance with alpha geometry. Average monthly air temperatures and average hourly temperatures for the coldest and warmest day of the year were applied to the model using macros and Excel worksheets. Those temperatures are the average from many years for Warsaw. Based on the applied data, the amount of regassified LNG, power of the entire system, indicated engine power, engine and system efficiency, as well as temperature in cylinders (and thus in heat exchangers) were calculated. The results showed the reasonability of using LNG as the lower heat source, and atmospheric air as the upper heat source. The system generates sufficient power, in all conditions, to meet the system energy consumption requirements i.e. fan. It produces significant excess amount of energy, which varies on the external conditions, i.e. the air temperature. In addition, the system meets the requirements for regassify amount of LNG at the end user.
Czasopismo
Rocznik
Tom
4
Strony
140--155
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • 1. Al-Mutaz, I. S., Wazeer, I., Khan, R. & Chafidz, A. Process selection and recent design innovations for LNG plants - Part 1. Gas Processing and LNG (2019).
  • 2. Arcuri, N., Bruno, R. & Bevilacqua, P. LNG as cold heat source in OTEC systems. Ocean Engineering 104, 349–358. issn: 0029-8018 (2015).
  • 3. Basic Properties of LNG. GIIGNL Information Paper No 1 (2009).
  • 4. Buliński, Z. et al. Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy. Energy 141, 2559–2571. issn: 0360-5442 (2017).
  • 5. Canepa, M. Pricing on gas: focus on LNG sectors (GoLNG, 2020).
  • 6. Cao, W., Beggs, C. & Mujtaba, I. M. Theoretical approach of freeze seawater desalination on flake ice maker utilizing LNG cold energy. Desalination 355, 22–32. issn: 0011-9164 (2015).
  • 7. Franco, A. & Casarosa, C. Thermodynamic analysis of direct expansion configurations for electricity production by LNG cold energy recovery. Applied Thermal Engineering 78, 649–657. issn: 1359-4311 (2015).
  • 8. Gao, T., Lin, W. & Gu, A. Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized. Energy Conversion and Management 52. 9th International Conference on Sustainable Energy Technologies (SET 2010), 2401–2404. issn: 0196-8904 (2011).
  • 9. GIIGNL 2018 Annual Report (International Group of Liquefied Natural Gas Importers, 2018).
  • 10. Hirata, K. Schmidt Theory for Stirling Engines http://www.bekkoame.ne.jp/~khirata/academic/schmidt/schmidt.htm (2019).
  • 11. Jiang, K. in Energy Solutions to Combat Global Warming (eds Zhang, X. & Dincer, I.) 119–132 (Springer International Publishing, Cham, 2017). isbn: 978-3-319-26950-4.
  • 12. Kakaç, S., Liu, H. & Pramuanjaroenkij, A. Heat Exchangers. Selection, Rating, and Thermal Design Edition Third edition. isbn: 9781466556164 (CRC Press, 2012).
  • 13. Kanbur, B. B., Xiang, L., Dubey, S., Choo, F. H. & Duan, F. Cold utilization systems of LNG: A review. Renewable and Sustainable Energy Reviews 79, 1171–1188. issn: 1364-0321 (2017).
  • 14. Kanbur, B. B., Liming, X., Dubey, S., Hoong, C. F. & Duan, F. Dynamic exergetic and environmental assessments of the small scale LNG cold utilized micro power generation systems. Energy Procedia 143, 680–685. issn: 1876-6102 (2017).
  • 15. Mehrpooya, M., Kalhorzadeh, M. & Chahartaghi, M. Investigation of novel integrated air separation processes, cold energy recovery of liquefied natural gas and carbon dioxide power cycle. Journal of Cleaner Production 113, 411–425. issn: 0959-6526 (2016).
  • 16. Miyazaki, T, Kang, Y., Akisawa, A & Kashiwagi, T. A combined power cycle using refuse incineration and LNG cold energy. Energy 25, 639–655. issn: 0360-5442 (2000).
  • 17. Handbook of Liquefied Natural Gas (eds Mokhatab, S., Valappil, J. V., Mak, J. Y. & Wood, D. A.) (Gulf Professional Publishing, 2014).
  • 18. Oshima, K., Ishizaki, Y., Kamiyama, S., Akiyama, M. & Okuda, M. The utilization of LH2 and LNG cold for generation of electric power by a cryogenic type stirling engine. Cryogenics 18, 617–620. issn: 0011-2275 (1978).
  • 19. Otsuka, T. Evolution of an LNG Terminal: Senboku Terminal of Osaka Gas in. 23rd World Gas Conference, Amsterdam 2006 (2006).
  • 20. Outlook for Natural Gas 2018 (International Energy Agency, 2018).
  • 21. Szargut, J. & Szczygiel, I. Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity. Energy 34, 827–837. issn: 0360-5442 (2009).
  • 22. The LNG industry. GIIGNL Annual Report (International Group of Liquefied Natural Gas Importers, 2020).
  • 23. Wang, K., Dubey, S., Choo, F. H. & Duan, F. Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat. Energy 127, 280–290. issn: 0360-5442 (2017).
  • 24. Wiśniewski, S. Wymiana Ciepła (Wydawnictwo Naukowo-Techniczne, Warszawa, 2012).
  • 25. Ze Świnoujścia wyjechało już 4000 autocystern ze skroplonym gazem LNG Polskie Górnictwo Naftowe i Gazownictwo S. A. http://pgnig.pl/aktualnosci/-/news-list/id/ze-swinoujscia-wyjechalo-juz-4000-autocysternzeskroplonymgazemlng/newsGroupId/10184?changeYear=2019&currentPage=11 (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2a7fcb9-5d90-4a7e-9b9c-230b8f88c934
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.