PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of signal processing methods for geomagnetic precursor of the 2012 M6.9 Visayas, Philippines earthquake

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study assessed two signal processing methods on geomagnetic data to detect precursory signals appearing before the M6.9 Visayas, Philippines earthquake on 6 February 2012. It aimed to compare the polarization ratio analysis method with the diurnal variation ratio method in terms of reliability and efectiveness. The geomagnetic data were obtained from the MAGDAS magnetometer network for Cebu (CEB) and Legazpi (LGZ) stations which served as the primary and remote stations, respectively. The polarization ratio analysis method was performed on the primary station data to obtain power spectral density in an ultra-low-frequency range before fnding the ratio of vertical to total horizontal component. Meanwhile, the diurnal variation ratio method was used to calculate the diference between the daily maximum and minimum values. Then, the ratio of the daily diferences of the primary station to the remote station for each individual component was calculated. The disturbance storm time index which describes global geomagnetic activity originating from the Sun was utilized to verify that any observed geomagnetic fuctuations were not caused by solar-terrestrial efect. A precursory anomaly was found using the polarization ratio analysis method which appeared 2 weeks before the earthquake. It is concluded that this method might be efective and reliable in detecting geomagnetic anomalies preceding upcoming earthquakes. In contrast, although the diurnal variation ratio method did show perceivable fuctuations, the running averages were not statistically significant to be considered a precursor. The discrepancy between the analytical results of the two methods may be attributed to the detectability of the earthquake being studied which had a relatively low magnitude. Hence, future studies which utilize more earthquake events need to be conducted to reach a definitive conclusion.
Czasopismo
Rocznik
Strony
1297--1306
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
  • Space Science Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, Selangor, Malaysia
  • Department of Physics, Faculty of Science, Universiti Putra Malaysia, ‎Selangor, Malaysia
  • Space Science Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, Selangor, Malaysia
  • School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, ‎Selangor, Malaysia
  • Space Science Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, Selangor, Malaysia
  • Centre of Advanced Electronic and Communication Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, ‎Selangor, Malaysia
autor
  • Department of Geophysics, Indonesian Agency for Meteorology, Climatology and Geophysics, Jakarta, Indonesia
  • International Center for Space Weather Science and Education, Kyushu University, Fukuoka 812-8581, Japan
Bibliografia
  • 1. Aurelio MA, Dianala JDB, Taguibao KJL, Pastoriza LR, Reyes K, Sarande R, Lucero A (2017) Seismotectonics of the 6 February 2012 Mw 6.7 Negros earthquake, central Philippines. J Asian Earth Sci 142:93–108. https://doi.org/10.1016/j.jseaes.2016.12.018
  • 2. Bello SA, Abdullah M, Hamid NSA, Yoshikawa A, Olawepo AO (2017) Variations of B0 and B1 with the solar quiet Sq-current system and comparison with IRI-2012 model at Ilorin. Adv Space Res 60:307–316. https://doi.org/10.1016/j.asr.2017.02.003
  • 3. Chauhan V, Singh OP, Pandey U, Singh B, Arrora BR, Rawat G, Pathan BM, Sinha AK, Sharma AK, Patil AV (2012) A search for precursor of earthquakes from multi-station ULF observation and TEC measurements in India. Indian J Radio Space 41:543–556
  • 4. Chavez O, Pérez-Enríquez R, Cruz-Abeyro JA, Millan-Almaraz JR, Kotsarenko A, Rojas E (2011) Detection of electromagnetic anomalies of three earthquakes in Mexico with an improved statistical method. Nat Hazards Earth Syst Sci 11:2021–2027. https://doi.org/10.5194/nhess-11-2021-2011
  • 5. Chen C-H, Liu J-Y, Lin P-Y, Yen H-Y, Hattori K, Liang W-T, Chen Y-I, Yeh Y-H, Zeng X (2010) Pre-seismic geomagnetic anomaly and earthquake location. Tectonophysics 489:240–247. https://doi.org/10.1016/j.tecto.2010.04.018
  • 6. Currie JL, Waters CL (2014) On the use of geomagnetic indices and ULF waves for earthquake precursor signatures. J Geophys Res Space Phys 119:992–1003. https://doi.org/10.1002/2013JA019530
  • 7. Dudkin F, de Santis A, Korepanov V (2003) Active EM sounding for early warning of earthquakes and volcanic eruptions. Phys Earth Planet Inter 139:187–195. https://doi.org/10.1016/S0031-9201(03)00157-2
  • 8. Dudkin F, Rawat G, Arora BR, Korepanov V, Leontyeva O, Sharma AK (2010) Application of polarization ellipse technique for analysis of ULF magnetic fields from two distant stations in Koyna-Warna seismoactive region, West India. Nat Hazards Earth Syst Sci 10:1513–1522. https://doi.org/10.5194/nhess-10-1513-2010
  • 9. Febriani F, Han P, Yoshino C, Hattori K, Nurdiyanto B, Effendi N, Maulana I, Gaffar E (2014) Ultra low frequency (ULF) electromagnetic anomalies associated with large earthquakes in Java Island, Indonesia by using wavelet transform and detrended fluctuation analysis. Nat Hazards Earth Syst Sci 14:789–798. https://doi.org/10.5194/nhess-14-789-2014
  • 10. Fedorov E, Pilipenko V, Uyeda S (2001) Electric and magnetic fields generated by electrokinetic processes in a conductive crust. Phys Chem Earth Part C 26:793–799. https://doi.org/10.1016/S1464-1917(01)95027-5
  • 11. Fraser-Smith AC, Bernardi A, McGill PR, Ladd ME, Helliwell RA, Villard OG Jr (1990) Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta Earthquake. Geophys Res Lett 17:1465–1468
  • 12. Hamid NSA, Gopir G, Ismail M, Misran N, Hasbi AM, Usang MD, Yumoto K (2009) The Hurst exponents of the geomagnetic horizontal component during quiet and active periods. In: International conference on space science and communication 2009. IEEE, pp 186–190
  • 13. Hasbi AM, Mohd Ali MA, Misran N (2011) Ionospheric variations before some large earthquakes over Sumatra. Nat Hazards Earth Syst Sci 11:597–611. https://doi.org/10.5194/nhess-11-597-2011
  • 14. Hayakawa M (2015) Earthquake prediction with radio techniques. Wiley, Singapore
  • 15. Hayakawa M, Kawate R, Molchanov OA, Yumoto K (1996) Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys Res Lett 23:241–244. https://doi.org/10.1029/95GL02863
  • 16. Hayakawa M, Hattori K, Ohta K (2007) Monitoring of ULF geomagnetic variations associated with earthquakes. Sensors 7:1108–1122. https://doi.org/10.3390/s7071108
  • 17. Ida Y, Yang D, Li Q, Sun H, Hayakawa M (2008) Detection of ULF electromagnetic emissions as a precursor to an earthquake in China with an improved polarization analysis. Nat Hazards Earth Syst Sci 8:775–777. https://doi.org/10.5194/nhess-8-775-2008
  • 18. Molchanov OA, Hayakawa M (1998) On the generation mechanism of ULF seismogenic electromagnetic emissions. Phys Earth Planet Inter 105:201–210. https://doi.org/10.1016/S0031-9201(97)00091-5
  • 19. Molchanov OA, Hayakawa M (2008) Seismo electromagnetics and related phenomena: history and latest results. Terrapub, Tokyo
  • 20. Potirakis SM, Hayakawa M, Schekotov A (2017) Fractal analysis of the ground-recorded ULF magnetic fields prior to the 11 March 2011 Tohoku earthquake (Mw = 9): discriminating possible earthquake precursors from space-sourced disturbances. Nat Hazards 85:59–86. https://doi.org/10.1007/s11069-016-2558-8
  • 21. Prattes G, Schwingenschuh K, Eichelberger HU, Magnes W, Boudjada M, Stachel M, Vellante M, Wesztergom V, Nenovski P (2008) Multi-point ground-based ULF magnetic field observations in Europe during seismic active periods in 2004 and 2005. Nat Hazards Earth Syst Sci 8:501–507. https://doi.org/10.5194/nhess-8-501-2008
  • 22. Prattes G, Schwingenschuh K, Eichelberger HU, Magnes W, Boudjada M, Stachel M, Vellante M, Villante U, Wesztergom V, Nenovski P (2011) Ultra Low Frequency (ULF) European multi station magnetic field analysis before and during the 2009 earthquake at L’Aquila regarding regional geotechnical information. Nat Hazards Earth Syst Sci 11:1959–1968. https://doi.org/10.5194/nhess-11-1959-2011
  • 23. Schekotov A, Fedorov E, Hobara Y, Hayakawa M (2013) ULF magnetic field depression as a possible precursor to the 2011/3.11 Japan earthquake. J Atmos Elect 33:41–51. https://doi.org/10.1541/jae.33.41
  • 24. Sorokin VM, Pokhotelov OA (2010) Generation of ULF geomagnetic pulsations during early stage of earthquake preparation. J Atmos Solar Terr Phys 72:763–766. https://doi.org/10.1016/j.jastp.2010.03.021
  • 25. Stanica DA, Stanica D, Błęcki J, Ernst T, Jóźwiak W, Słomiński J (2018) Pre-seismic geomagnetic and ionosphere signatures related to the Mw5.7 earthquake occurred in Vrancea zone on September 24, 2016. Acta Geophys 66:167–177. https://doi.org/10.1007/s11600-018-0115-4
  • 26. Stranneby D, Walker W (2004) Digital signal processing and applications, 2nd edn. Newnes, Oxford
  • 27. Xu G, Han P, Huang Q, Hattori K, Febriani F, Yamaguchi H (2013) Anomalous behaviors of geomagnetic diurnal variations prior to the 2011 off the Pacific coast of Tohoku earthquake (Mw9.0). J Asian Earth Sci 77:59–65. https://doi.org/10.1016/j.jseaes.2013.08.011
  • 28. Yusof KA, Abdullah M, Hamid NSA, Ahadi S (2019) On effective ULF frequency ranges for geomagnetic earthquake precursor. J Phys Conf Ser 1152:12033. https://doi.org/10.1088/1742-6596/1152/1/012033
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2a117db-4119-489a-8d03-d3058bf3931f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.