Identyfikatory
Warianty tytułu
Study of the digested sludge dewatering effectiveness using polyelectrolyte gel based on organic polymers
Języki publikacji
Abstrakty
W artykule przedstawiono wyniki badań odwadniania osadów ściekowych z zastosowaniem polielektrolitów żelowych. Założeniem badań było określenie możliwości zwiększenia wydajności odwadniania osadów ściekowych przy zastosowaniu nowoczesnych polimerów. Autorzy przeprowadzili badania w skali laboratoryjnej i półtechnicznej wraz z określeniem wpływu nowego rodzaju polielektrolitu żelowego na skuteczność odwadniania przefermentowanych osadów ściekowych. Badano wpływ dwóch dawek roztworu polielektrolitu wynoszących 4 ml/m3 – dawka nr I oraz 8 ml/m3 – dawka nr II na skuteczność odwadniania przefermentowanych osadów ściekowych. Uzyskane wyniki badań przeprowadzone na prasie laboratoryjnej wykazały zwiększenie skuteczności odwadniana przefermentowanego osadu ściekowego o ok. 2% przy zastosowaniu dawki nr I i o ok. 13% przy zastosowaniu dawki nr II, w porównaniu do odwadniania bez zastosowania badanego polielektrolitu.
The paper addresses the problems connected with sewage sludge dewatering. The premise of the study was the analysis of whether there are opportunities to increase the efficiency of dewatering sludge, a relatively low-cost involving the use of innovative polymers. The authors analyzed the impact of the new type of polyelectrolyte gel on the effectiveness of dewatering sludge. Laboratory studies were carried out at polyelectrolyte dose selection and laboratory testing on the press chamber designed to simulate the actual operation of sludge dewatering system. Two different doses of polyelectrolyte were tested for dose I – 4 ml/ m3 and dose II – 8 ml/ m3. The conducted analysis on laboratory press showed an increase of sludge dewatering efficiency by about 2% for dose no. I and by about 13% for dose no. II, in comparison to the test without polyelectrolyte.
Czasopismo
Rocznik
Tom
Strony
100--108
Opis fizyczny
Bibliogr. 16 poz., tab., rys.
Twórcy
autor
- Pracownia Technologii Wody i Ścieków, Zakład Ochrony Wód, Główny Instytut Górnictwa w Katowicach, Plac Gwarków 1, 40-166 Katowice
autor
- Pracownia Technologii Wody i Ścieków, Zakład Ochrony Wód, Główny Instytut Górnictwa w Katowicach, Plac Gwarków 1, 40-166 Katowice
Bibliografia
- 1. Boušková A., Jansen J.L.C. 2006. Improvement of separation and dewatering of activated sludge by using enhanced biological removal process over chemical phosphorus precipitation. Journal of Residuals Science and Technology 3, 145–151.
- 2. Boušková A., Persson E., Jansen J.L.C., Dohanyos M. 2006. The effect of operational temperature on dewatering characteristics of digested sludge. Journal of Residuals Science and Technology 3, 43–49.
- 3. Scholz M. 2005. Review of recent trends in Capillary Suction Time (CST) dewaterability testing research. Industrial and Engineering Chemistry Research 44, 8157–8163.
- 4. Tastu Y. 2007. Evaluation of sludge dewatering properties. Master thesis No 2007-09. Water and Environment Engineering, Department of Chemical Engineering, Lund University.
- 5. Appels L., Baeyens J., Degrève J., Dewil R., 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. 34, 755–781.
- 6. Saveyn H., Meersseman S., Thas O., Van D.M.P., 2005. Influence of polyelectrolyte characteristics on pressure-driven physicochemical dewatering. Colloid Surf. A: Physicochem. Eng. Aspects 262, 40–51.
- 7. Glendinning S., Lamont-Black J., Jones C.J.F.P., 2007. Treatment of sewage sludge using electrokinetic geosynthetics. Journal of Hazardous Materials 139, 267–276.
- 8. Vaxelaire J., Olivier J., 2006. Conditioning for municipal sludge dewatering. From filtration compression tests to belt press. Drying Technol. 24, 1225–1233.
- 9. Tuan P.A., Sillappää M., 2010. Migration of ions and organic matter during electrodewatering of anaerobic sludge. J. Hazard. Mater. 173, 54–61.
- 10. Mahmoud A., Olivier J., Vaxelaire J., Hoadley F.A., 2011. Electro-dewatering of wastewater sludge: influence of the operating conditions and their interactions effects. Water Res. 45, 2795–2810.
- 11. Maynard A.D., Aitken R.J., Butz T., Colvin V., Donaldson K., Oberdorster G., Philbert M.A., Ryan J., Seaton A., Stone V., Tinkle S.S., Tran L., Walker N.J., Warheit D.B., 2006. Safe handling of nanotechnology. Nature 444, 267–269.
- 12. Mu H., Chen Y., Xiao N., 2011. Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2, ZnO) on waste activated sludge anaerobic digestion. Bioresour. Technol., 10305–10311.
- 13. Ellsworth D.K., Verhulst D., Spitler T.M., Sabacky B.J., 2000. Titanium nanoparticles move to the marketplace. Chem. Innovation 30(12), 30–35.
- 14. Serda R.E., Ferrati S., Godin B., Tasciotti E., Liu X.W., Ferrari M., 2009. Mitotic trafficking of silicon microparticles. Nanoscale 1(2), 250–259.
- 15. Kim J., Van D.B., 2010. The use of polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. 158, 2335–2349.
- 16. Werle S. 2010. Termiczne sposoby zagospodarowania osadów ściekowych. Energia ze ścieków. Politechnika Śląska, Energetyka Cieplna i Zawodowa, nr 9.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d29ca395-f70d-4c8a-9260-46ed6e21371a