PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Parameter identification for stochastic burgers' flows via parabolic rescaling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a systematic study of classical statistical inference problems (parameter estimation and hypothesis testing) for random fields arising as solutions of the one-dimensional nonlinear diffusion equation with random initial data (the Burgers' turbulence problem). This nonlinear, hydrodynamic-type partial differential equation is an ubiquitous model in physics and engineering. This work can be seen as part of a larger program of developing statistical inference tools for complex stochastic flows governed by nontrivial, physically constrained dynamics.
Rocznik
Strony
1--55
Opis fizyczny
Bibliogr. 100 poz.
Twórcy
  • School of Mathematics, Cardiff University, Cardiff CF2 4YH
  • Center for Stochastic and Chaotic Processes in Science and Technology, United Kingdom and Department of Statistics Case Western Reserve University Cleveland, Ohio 44106, U.S.A.
Bibliografia
  • [1] S. Albeverio, S. A. Molchanov and D. Surgailis, Stratified structure of the Universe and Burgers' equation: A probabilistic approach, Probab. Theory Related Fields 100 (1994), pp. 457484.
  • [2] V. V. An h and K. E. Lunney, Parameter estimation of random fields with long-range dependence, Math. Comput. Modelling 2 (1995), pp. 66-77.
  • [3] M. Avellaneda and W. E, Statistical properties of shocks in Burgers turbulence, Comm. Math. Phys. 172 (1995), pp. 13-38.
  • [4] J. Beran, Statistics for Long-Memory Processes, Chapman and Hall, New York 1994.
  • [5] I. Bertini, N. Cancrini and G. Jona-Lasinio, The stochastic Burgers equation, Comm. Math. Phys. 165 (1994), pp. 211-232.
  • [6] N. H. Bingham, C. M. Goldie and T. L. Teugels, Regular Variation, Cambridge University Press, Cambridge 1987.
  • [7] P. Breuer and P. Major, Central limit theorems for nonlinear functionals of Gaussian fields, J. Multivariate Anal. 13 (1983), pp. 425-447.
  • [8] V. V. Buldigin, On comparison inequalities for the distribution of the Gaussian process maximum, Theory Probab. Math. Statist. 28 (1983), pp. 9-14.
  • [9] V. V. Buldigin, On properties of empirical periodogram of Gaussian process with square integrable spectral density, Ukrainian Math. J. 47 (1995), pp. 876-889.
  • [l0] A. V. Bulinski and S. A. Molchanov, Asymptotic Gaussianess of solutions of the Burgers' equation with random initial data, Theory Probab. Appl. 36 (1991), pp. 217-235.
  • [11] J. Burgers, The Nonlinear Diffusion Equation, Kluwer, Dordrecht 1974.
  • [12] M. J. Chambers, The estimation of continuous parameter long-memory time series models, Econometric Theory 12 (1996), pp. 374390.
  • [13] A. J. Chorin, Lecture Notes in Turbulence Theory, Publish, or Perish., Berkeley, CA, 1975.
  • [14] F. Comte, Simulation and estimation of long memory continuous time models, J. Time Ser. Anal. 17 (1996), pp. 19-36.
  • [15] H. Cramer and M. R Leadbetter, Stationary and Related Stochastic Processes, Wiley, New York 1967.
  • [16] R. Dahlhaus, Efficient parameter estimation for self-similar processes, Ann. Statist. 17 (1989), pp. 1749-1766.
  • [17] R. Dahlhaus and W. Wefelmeyer, Asymptotic optimal estimation in misspecified time series models, Ann. Statist. 24 (1996), pp. 952-974.
  • [18] I. Deriev and N. N. Leonenko, Limit Gaussian behavior of the solutions of the multidimensional Burgers' equation with weak-dependent initial conditions, Acta Appl. Math, 47 (1997), pp. 1-18.
  • [19] R. L. Dobrushin and P. Major, Non-central limit theorems for non-linear functionals of Gaussian fields, Z. Wahrsch. verv. Gebiete 50 (1979), pp. 1-28.
  • [20] K. Dzhaparidze and S. Kotz, Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series, Springer, Berlin 1986.
  • [21] K. 0. Dzhaparidze and A. M. Yaglom, Spectrum Parameter Estimation in Time Series, in: Developments in Statistics, P. R. Krishaiah (Ed.), Vol. 4, Chapter 1, Academic Press, New York 1983, pp. 1-96.
  • [22] W. E, Yu. G. Rykov and Ya. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Physics 177 (1996), pp. 349-380.
  • [23] X. Fernique, Régularité des trajectoires des fonctions aléatoires gaussiennes, Lecture Notes in Math. 408, Springer, Berlin 1975.
  • [24] R. Fox and M. S. Taqqu, large sample properties of parameter estimates for strongly dependent Gaussian stationary time series, Ann. Statist 14 (1986), pp. 517-532.
  • [25] T. Funaki, D. Surgailis and W. A. Woyczynski, Gibbs-Cox random fields and Burgers turbulence, Ann. Appl. Probab. 5 (1995), pp. 461-492.
  • [26] T. Geweke and J. Porter-Hudak, The estimation and application of long memory time series model, J. Time Ser. Anal. 4, No. 4 (1983), pp. 221-238.
  • [27] L. Giraitis, S. A. Molchanov and D. Surgailis, Long memory shot noises and limit theorems with applications to Burgers equation, in: New Directions in 'lime Series Analysis, Part 11, Caines et al. (Eds.), Springer, Berlin 1993, pp. 153-176.
  • [28] L. Giraitis, P. Robinson and A. Samarov, Rate optimal semiparametric estimation of the long memory parameter of the Gaussian time series with long-range dependence, J. Time Ser. Anal. 18 (1997), pp. 49-60.
  • [29] L. Giraitis, P. Robinson and D. Surgailis, Varionce-type estimation of long memory, Stochastic Process. Appl 80 (1999), pp. 1-24.
  • [30] L. Giraitis and D. Surgailis, CL T and other limit theorem for functionals of Gaussian process, Z. Wahrsch. verw. Gebiete 70 (1985), pp. 191-212.
  • [31] L. Giraitis and D. Surgailis, A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittle's estimates, Probab. Theory Related Fields 86 (1990), pp. 87-104.
  • [32] U. Grenander, Abstract Infernce, Wiley, New York 1981.
  • [33] U. Grenander and M. Rosenblatt, Statistical Analysis of Stationary Time Series, Chelsea Publ. Company, New York 1984.
  • [34] S. Gurbatov, A. Malakhov and A. Saichev, Non-linear Waves and Turbulence in Nondispersive Media: Waves, Rays and Particles, Manchester University Press, Manchester 1991.
  • [35] X. Guyon, Parameter estimation for a stationary process on a d-dimensional lattice, Biometrica 69 (1982), pp. 95-105.
  • [36] X. Guyon, Random Fields on a Network. Modeling, Statistics, and Applications, Springer, Berlin 1995.
  • [37] E. Hannan, The asymptotic theory of linear time series models, J. Appl. Probab. 10 (1973), pp. 130-145.
  • [38] C. C. Heyde and R. Gay, On asymptotic quasi-likelihood, Stochastic Process. Appl. 31 (1989), pp. 223-236.
  • [39] C. C. Heyde and R. Gay, Smoothed periodogram asymptotics and estimation for processes and fields with possible long-range dependence, Stochastic Process. Appl. 45 (1993), pp. 169-182.
  • [40] S. Hodges and A. Carverhill, Quasi-mean reversion in an efficient stock market; the characterization of economic equilibria which support Block-Schols option pricing, Econom. J. 102 (1993), pp. 395-405.
  • [41] M. Holden, B. Øksendall, T. Ubøe and T.-S. Zhang, Stochastic Partial Differential Equations. A Modeling, White Noise Functional Approach, Birkhäuser, Boston 1996.
  • [42] Y. Hu and W. A Woyczynski, An extremal rearrangement properties of statistical solutions of Burgers' equation, Ann. Appl. Probl. 4 (1994), pp. 838-858.
  • [43] Y. Hu and W. A. Woyczynski, Shock density in Burgers turbulence, in: Non-linear stochastic PDE's; Hydrodynamic Limit and Burgers Turbulence, T. Funaki and W. A. Woyczynski (Eds.), IMA 77, Springer, Berlin 1995, pp. 167-192.
  • [44] Y. Hu and W. A. Woyczynski, Limit behavior of quadratic forms of mooing averages and statistical solutions of the Burgers equation, J. Multivariate Anal. 52 (1995), pp. 154%.
  • [45] C. M. Hurvich and K I. Beltrao, Asymptotics for the low-frequency ordinates of the periodogram of a long-memory time series, J. Time Ser. Anal. 14, No. 5 (1993), pp. 455-472.
  • [46] C. M. Hurvich, R. Deo and J. Brodsky, The mean squared error of Geweke and Porter-Hudak's estimator of long-memory parameter of long-memory time series, J. Time Ser. Anal. 19 (1998), pp. 19-46.
  • [47] C. M. Hurvich and B. K. Ray, Estimation of the memory parameter for nonstationary or noninvertible fractionally integrated processes, J. Time Ser. Anal. 16, No. 1 (1995), pp. 1742.
  • [48] I. A. Ibragimov, On maximum likelihood estimation of parameters of the spectral density of stationary time series, Theory Probab. Appl. 12 (1967), pp. 115-119.
  • [49] E. Iglói, On periodogram based least squares estimation of the long memory parameter of FARMA process, Publ. Math. Debrecen 44 (1994), pp. 367-380.
  • [50] A. V. Ivanov and N. N, Leonenko, On the convergence of the distributions of functionals of correlation functions estimates, Lithuanian Math. J. 18 (1978), pp. 35-44.
  • [51] A. V. Ivanov and N. N. Leonenko, Statistical Analysis of Random Fields, Kluwer, Dordrecht 1989.
  • [52] M. Kardar, G. Parisi and Y. C. Zhang, Dynamical scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), pp. 889-892.
  • [53] Y. Kifer, The Burgers equation with random force and a general model of directed polymers in random environments, Probab. Theory elated Fields 108 (1997), pp. 29-45.
  • [54] L. Kofman, D. Pogosyan, S. Shandarin and k Melott, Coherent structures in the Universe and the adhesion model, Astrophysical J. 393 (19921, pp. 437-449.
  • [55] H. R. Künsch, Discrimination between monotonic trends and long-range dependence, J. Appl. Probab. 23 (19161, pp. 102-1030.
  • [56] S. Kwapień and W. A. Woyczynski, Random Series and Stochastic integrals: Single and Multiple, Birkhäuser, Boston 1992.
  • [57] N. N. Leonenk o and I. I. Deriev, Limit theorems for solutions of multidimensional Burgers equation with weak dependent random initial conditions, Theory Probab. Math Statist. 51 (19941, pp. 103-115.
  • [58] N. N. Leonenko and E. Or singher, Limit theorems for solutions of Burgers equation with Gaussian and non-Gaussian initial data, Theory Probab. Appl. 40 (1995), pp. 387-403.
  • [59] N. N. Leonenko, E. Orsingher and K. V. Rybasov, Limit distributions of solutions of multidimensional Burgers equation with random initial data, I, II, Ukrainian Math. 1.46 (1994), pp. 870-877, 1003-1110.
  • [60] N. N. Leonenko, V. N. Parkhomenko and W. A. Woyczynski, Spectral properties at the scaling limit solutions of the Burgers' equation with singular data, Random Oper. Stoch. Equations 4 (1996), pp 224-238.
  • [61] N. N. Leonenko and W. A. Woyczynski, Exact parabolic asymptotics for singular n-D Bwgers' random fields: Gaussian approximation, Stochastic Process. Appl. 76 (1998), pp. 141-165.
  • [62] N. N. Leonenko and W. A. Woyczynski, Parameter identication for singular random fields arising in Burgers' turbulence, J. Statist. Plann. Inference 80 (1999), pp. 1-13.
  • [63] S. A. Molchanov, D. Surgailis and W. A. Woyczynski, Hyperbolic asymptotics in Burgers turbulence, Comm. Math Phys. 168 (1995), pp. 209-226.
  • [64] S. A. Molchanov, D. Surgailis and W. A. Woyczynski, The large-scale structure of the Universe and quasi-Voronoi tesselation of shock fronts in forced Burgers' turbulence in Rd, Ann. Appl. Probab. 7 (1997), pp. 200-228.
  • [65] D. Mumford, Tata Lectures on Theta-Functions, in: Progress in Mathematics, Vol 28, Birkhäuser, New York 1983.
  • [66] J. Rice, On the estimation of the parameters of power spectrum, J. Multivariate Anal 9 (1979), pp. 378-392.
  • [67] P. M. Robinson, Semiparametric analysis of long-memory time series, Ann. Statist. 22 (1994), pp. 515-539.
  • [68] P. M. Robinson, Log-periodogram regression of time series with long-range dependence, Ann. Statist. 23 (19953, pp. 1048-1072.
  • [69] P. M. Robins on, Gaussian semiparmetric estimation of long-range dependence, Ann. Statist. 23 (1995), pp. 1630-1661.
  • [70] M. Rosenblatt, Remark on the Burgers equation, J. Math. Phys. 9 (1968), pp. 1129-1136.
  • [71] M. Rosenblatt, Stationary Sequences and Random Fields, Birkhäuser, Boston 1985.
  • [72] M. Rosenblatt, Scale renormalization and random solutions of Burgers equation, J. Appl. Probab. 24 (1987), pp. 328-338.
  • [73] R. Ryan, The statistics of Burgers turbulence initiated with fractional Brownian-noise data, Comm. Math. Phys, 191 (1998), pp. 71-86.
  • [74] R Ryan, Large-deviation analysis of Burgers turbulence with white-noise initial data, Comm. Pure Appl. Math. 51 (1998), pp. 45-75.
  • [75] A. I. Saichev and W. A. Woyczynski, Density filds in Burgers and KdV-Burgers turbulence, SIAM J. Appl. Math. 56 (1996), pp. 1008-1038.
  • [76] A. I. Saichev and W. A. Woyczynski, Evolution of Burgers' turbulence in the presence of external forces, J. 'Fluid Mech. 331 (1997), pp. 313-343.
  • [77] A. I. Saichev and W. A, Woyczynski, Distributions in the Physical and Engineering Sciences, Volume 1: Distributional and Fractal Calculus, Integral Transforms and Wavelets (2001), Volume 2: Linear, Nonlinear, Fractal and Random Dynamics in Continuous Media, Birkhäuser, Boston 1997.
  • [78] S. F. Shandarin and Ya. B. Zeldovich, Turbulence, intermittency, structures in a self-gravitating medium: the large scale structure of the Universe, Rev. Modern Phys. 61 (1989), pp. 185-220.
  • [79] Ya. G. Sinai, Self-similar probability distributions, Theory Probab. Appl. 21 (19761, pp. 64-80.
  • [80] Ya. G. Sinai, Two results concerning asymptotic behavior of solutions of the Burgas equation with force, 1. Statist. Phys. 64 (1991), pp. 1-12.
  • [8l] Ya. G. Sinai, Statistics of shocks in solutions of inviscid Burgers equation, Comm. Math. Phys. 148 (1992), pp. 601-621.
  • [82] M. L. Stein, Fixed-domain asymptotics for spatial periodograms, J. Amer. Statist. Assoc. 90 (432) (19951, pp. 1277-1288.
  • [83] D. Surgailis, Intermediate asymptotics of statistical solutions of Burgers' equation, in: Stochastic Modelling in Physical Oceanography, R. Adler et al. (Eds.), Progress in Probability, Vol. 39, Birkhäuser, Boston 1996, pp. 137-145.
  • [84] D. Surgailis and W. A. Woyczynski, Long range prediction and scaling limit for statistical solutions of the Burgers' equation, in: Nonlinear Waves and Weak Turbulence, with Applications in Oceanolography and Condensed Matter Physics, N. Fitzmaurie et at. [Eds.), Birkhäuser, Boston 1993, pp. 313-338.
  • [85] D. Surgailis and W. A. Woyczynski, Burgers' equation with non-local shot noise data, J. Appl. Probab. 31A (1994), pp. 351-362.
  • [86] D. Surgailis and W. A. Woyczynski, Scaling limits of solutions of the Burgers' equation with singular Gaussian initial data, in: Chaos Expansions. Multiple Wiener-It Integrals and Their Applications, V. Perez-Abren [Ed.), CRC Press, 1994, pp. 145-161.
  • [87] M. Tanigushi, Higher Order Asymptotic Theory for Tim Series Analysis, Lecture Notes in Statist. 68, Springer, Berlin 1991.
  • [88] M. S. Taqqu, Convergence of iterated processes of arbitrary Hermite range, Z. Wahrsch. verw. Gebiete 50 (1979), pp. 53-83.
  • [89] M. Vergassola, B. D. Dubrulle, U. Frisch and A. Noullez, Burgers equation, devil's staircases and mass distribution for the large-scale structure, Astronom. and Astrophys. 289 (1994), pp. 325-356.
  • [90] M. C. Viano, C. Deniau and G. Oppenheim, Continuous-time fractional ARMA process, Statist. Probab. Lett. 21 (1994), pp. 323-326.
  • [91] A. Walker, Asymptotic properties of least-square estimates of parameters of the spectrum of a stationary nondeterministic time series, J. Austral. Math. Soc. 35 (1964), pp. 363-384.
  • [92] J. Wehr and J. Xin, White noise perturbation of the viscous chock fronts of the Burgers equation, Comm. Math. Phys. 181 (1996), pp. 183-203.
  • [93] D. H. Weinberg and T. E. Gunn, Large scale structure and the adhesion approximation, Monthly Notices Roy. Astronom. Soc. 247 (1990), pp. 260-286.
  • [94] P. Whittle, Hypothesis Testing in Time Series Analysis, Almquist and Wickell, Uppsala 1951.
  • [95] P. Whittle, Estimation and information in stationary time series, Ark. Mat. 2 (1953), pp. 423-434.
  • [96] D. V. Widder, The Heat Equation, Academic Press, New York 1975.
  • [97] G. 3. Witham, Linear and Nonlinear Waves, Wiley, New York 1974.
  • [98] W. A. Woyczynski, Stochastic Burgers flows, in: Nonlinear Waves and Weak Turbulence, W. Fitzmaurice et al. (Eds.i Birkhäuser, Boston 1993, pp. 279-311.
  • [99] W. A. Woyczynski, Burgers-KPZ Turbulence - Göttingen Lectures, Lecture Notes in Math. 1700, Springer, 1998.
  • [l00] S. Zacks, The Theory of Statistical Inference, Wiley, New York 1971.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d29bbd34-73b3-46d7-852b-a52e11a8841b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.