PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pullout capacity of cylindrical block embedded in sand

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Calculation of pullout capacity of anchoring concrete cylindrical block by finite element method is carried out. 3D model of the block assumes its free rotation. Alternative solutions with one and two pulling forces attached at different heights of the block are considered. Dependency of the ultimate pulling force on the points of its application, the block’s embedment depth as well as contact friction are investigated. Results of FE analysis and simple engineering estimations are compared. The maximum pullout resistance results from FE analysis when the rotation of the block is prevented.
Wydawca
Rocznik
Strony
30--37
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Faculty of Civil Engineering, ul. Akademicka 5, 44-100 Gliwice, Poland
  • Bialystok University of Technology, Faculty of Civil and Environmental Engineering, ul. Wiejska 45E, 15-351 Bialystok, Poland
Bibliografia
  • [1] Briaud J.-L. & Kim N.K. (1998). Beem Column Method for Tieback Walls. J. Geotech. Geoenviron. Eng. 124(1), 67-69. DOI: 10.1061/(ASCE)1090-0241(1998)124:1(67).
  • [2] Smoltczyk U. (2003). Geotechnical Engineering Handbook, Vol. 1. Fundamentals. Ernest & Sohn, Berlin.
  • [3] Smith I. (2006). Smith’s Elements of Soil Mechanics. Blackwell Publishing Ltd, Oxford, UK.
  • [4] Briaud J.-L. (2013). Geotechnical Engineering Unsaturated and Saturated Soils. John Wiley & Sons Inc., Hobokan, New Jersey.
  • [5] Zimmermann Th., Truty A., Urbański A. & Podleś K. (2010). Z_Soil. PC 2010 3D user manual, Theory, Tutorials and Benchmarks, Data Preparation. Elmepress Int. & Zace Services Ltd, Switzerland.
  • [6] Rowe R.K. & Davis E.H. (1982). The behaviour of anchor plates in sand. Géotechnique. 32(1). 25-41. DOI: 10.1680/geot.1982.32.1.25.
  • [7] Murray E.I. & Geddes I.D. (1989). Resistance of passive inclined anchors in cohesionless medium. Géotechnique. 39(3). 417-431.
  • [8] Kumar I. (2002). Seismic horizontal pullout capacity of vertical anchors in sands. Canadian Geotechnical Journal. 39(4). 982-991. DOI: 10.1139/t02-021.
  • [9] Merifield R.S. & Sloan S.W. (2006). The ultimate pullout capacity of anchors in frictional soils. Canadian Geotechnical Journal. 43(8). 852-868. DOI: 10.1139/t06-052.
  • [10] Kame G.S., Dewaikar D.M. & Deepankar Ch. (2012). Pullout Capacity of a Vertical Plate Anchor Embedded in Cohesion-less Soil. Earth Science Research. 1(1). 27-56. DOI: 10.5539/esr.v1n1p27.
  • [11] Bhattacharya P. & Kumar I. (2014). Pullout capacity of inclined plate anchors embedded in sand. Canadian Geotechnical Journal. 51(6). 1365-1370. DOI: 10.1139/cgj-2014-0114.
  • [12] Bhattacharya P. (2016). Pullout capacity of strip plate anchor in cohesive sloping ground under undrained condition, Comp. Geotech. 78. 134-143. DOI: 10.1016/j.compgeo.2016.05.006.
  • [13] Nouri H., Biscontin G. & Aubeny C.P. (2017). Numerical prediction of undrained response of plate anchors under combined translation and torsion, Comp. Geotech. 81. 39-48. DOI: 10.1016/j.compgeo.2016.07.008.
  • [14] Desai Ch.S. & Zaman M. (2014). Advanced Geotechnical Engineering. Soil – Structure Interaction Using Computer and Material Models. Taylor & Francis Group, Boca Raton, FL, USA.
  • [15] Stutz H., Wuttke F. & Benz T. (2014). Extended zero-thickness interface element for accurate soil – pile interaction modelling, In: Numerical Methods in Geotechnical Engineering, Hicks, Brinkgreve & Royce (Eds). Taylor & Francis Group, London, 283-288.
  • [16] Bond A. & Harris A. (2010). Decoding Eurocode. Taylor and Francis, New York, USA.
  • [17] Schofield A. N. & Wroth C. P. (1968). Critical State Soil Mechanics. McGraw-Hill.
  • [18] Atkinson J.H. (2007). The mechanics of soils and foundations. Taylor & Francis, London and New York.
  • [19] Flora, A. & Modoni G. (1997). Upgrading Equipment and Procedures for Stress Path Triaxial Testing of Coarse-Grained Materials. Geotechnical Testing Journal. Vol. 20., No. 4. 459-469. DOI: 10.1520/GTJ10412J.
  • [20] Iolli S., Modoni G., Chiaro G. & Salvatore E. (2015). Predictive correlations for the compaction of clean sands. Transportations Geotechnics. 4. 38-49. DOI: 10.1016/j.trgeo.2015.06.004.
  • [21] Geotechnnical Engineering Handbook (2011). Edited by Braja M. Das, J. Ross Publishing, Inc., Fort Lauderdale.
  • [22] EN 1997-1. (2004). Eurocode 7: Geotechnical design — Part 1. General rules. Brussels.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d299fed5-a834-48f4-8f64-2a80a6206558
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.