PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Origin and significance of early-diagenetic calcite concretions and barite from Silurian black shales in the East European Craton, Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Silurian Pelplin Formation is a part of a thick, mud-prone distal fill of the Caledonian foredeep, which stretches along the western margin of the East European Craton. The Pelplin Formation consists of organic carbon-rich mudstones that have recently been the target of intensive investigations, as they represent a potential source of shale gas. The Pelplin mudstones host numerous calcite concretions containing authigenic pyrite and barite. Mineralogical and petrographic examination (XRD, optical microscopy, cathodoluminoscopy, SEM-EDS) and stable isotope analyses (δ13Corg, δ13C and δ18O of carbonates, δ34S and δ18O of barite) were carried out in order to understand the diagenetic conditions that led to precipitation of this carbonate-sulfide-sulfate paragenesis and to see if the concretions can enhance the understanding of sedimentary settings in the Baltic and Lublin basins during the Silurian. Barite formed during early diagenesis before and during the concretionary growth due to a deceleration of sedimentation during increased primary productivity. The main stages of concretionary growth took place in yet uncompacted sediments shortly after their deposition in the sulfate reduction zone. This precompactional cementation led to preferential preservation of original sedimentary structures, faunal assemblages and earlydiagenetic barite, which have been mostly lost in the surrounding mudstones during burial. These components allowed for the reconstruction of important paleoenvironmental conditions in the Baltic and Lublin basins, such as depth, proximity to the detrital orogenic source and marine primary productivity. Investigation of the concretions also enabled estimation of the magnitude of mechanical compaction of the mudstones and calculation of original sedimentation rates. Moreover, it showed that biogenic methane was produced at an earlydiagenetic stage, whereas thermogenic hydrocarbons migrated through the Pelplin Formation during deep burial.
Rocznik
Strony
403--430
Opis fizyczny
Bibliogr. 100 poz., rys., tab., wykr.
Twórcy
  • ING PAN – Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, PL-00-818 Warszawa, Poland
  • ING PAN – Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Cracow, Senacka 1, PL-31-002 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Mickiewicza 30, PL-30-059 Kraków, Poland
  • ING PAN – Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, PL-00-818 Warszawa, Poland
Bibliografia
  • 1. Al-Aasm, I. 2003. Origin and characterization of hydrothermal dolomite in the Western Canada Sedimentary Basin. Journal of Geochemical Exploration, 78-79, 9–15.
  • 2. Azmy, K., Veizer, J., Bassett, M.G. and Copper, P. 1998. Oxygen and carbon isotopic composition of Silurian brachiopods: Implications for coeval seawater and glaciations. Geological Society of America Bulletin, 110, 1499–1512.
  • 3. Baker, P.A. and Kastner, M. 1981. Constraints on the formation of sedimentary dolomite. Science, 213, 214–216.
  • 4. Bennett, R.H., O’Brien, N.R. and Hulbert, M.H. 1991. Determinants of clay and shale microfabric signatures: process and mechanisms. In: Bennett, R.H., O’Brien, N.R. and Hulbert, M.H. (Eds), Microstructure of Fine-Grained Sediments, pp. 5–32. Springer; Berlin, Heidelberg, New York.
  • 5. Bishop, J.K.B. 1984. The barite-opal organic carbon association in oceanic particulate matter. Nature, 332, 341–343.
  • 6. Blome, C.D. and Albert, N.R. 1985. Carbonate concretions: An ideal sedimentary host for microfossils. Geology, 13, 212–215.
  • 7. Bojanowski, M.J. 2014. Authigenic dolomites in the Eocene–Oligocene organic carbon-rich shales from the Polish Outer Carpathians: evidence of past gas production and possible gas hydrate formation in the Silesian basin. Marine and Petroleum Geology, 51, 117–135.
  • 8. Bojanowski, M.J., Barczuk, A. and Wetzel, A. 2014. Deep-burial alteration of early-diagenetic carbonate concretions formed in Palaeozoic deep-marine greywackes and mudstones (Bardo Unit, Sudetes Mountains, Poland). Sedimentology, 61, 1211–1239.
  • 9. Bojanowski, M.J. and Clarkson, E.N.K. 2012. Origin of siderite concretions in microenvironments of methanogenesis developed in sulfate reduction zone: an exception or a rule? Journal of Sedimentary Research, 82, 585–598.
  • 10. Bondioli, J.G., Matos, S.A., Warren, L.V., Assine, M.L., Riccomini, C. and Simões, M.G. 2015. The interplay between event and background sedimentation and the origin of fossil-rich carbonate concretions: a case study in Permian rocks of the Paraná Basin, Brazil. Lethaia, 48, 522–539.
  • 11. Botor, D., Golonka, J., Zając, J., Papiernik, B and Guzy, P. 2017. Generowanie i ekspulsja węglowodorów w utworach dolnopaleozoicznych w obszarze SW skłonu wschodnioeuropejskiej platformy prekambryjskiej w NE Polsce: implikacje dla poszukiwań złóż niekonwencjonalnych. In: Golonka, J. and Bębenek, S. (Eds), Opracowanie map zasięgu, biostratygrafia utworów dolnego paleozoiku oraz analiza ewolucji tektonicznej przykrawędziowej strefy platformy wschodnioeuropejskiej dla oceny rozmieszczenia niekonwencjonalnych złóż węglowodorów, pp. 423–451. Arka; Cieszyn.
  • 12. Bottrell, S.H., Parkes, J., Cragg, B.A. and Raiswell, R. 2000. Isotopic evidence for deep pyrite oxidation and stimulation of bacterial sulphate reduction. Journal of the Geological Society, 157, 711–714.
  • 13. Bréhéret, J.-G. and Brumsack, H.-J. 2000. Barite concretions as evidence of pauses in sedimentation in the Marnes Bleues Formation of the Vocontian Basin (SE France). Sedimentary Geology, 130, 205–228.
  • 14. Buchardt, B. and Nielsen, A.T. 1985. Carbon and oxygen isotope composition of Cambro-Silurian limestone and anthraconite from Bornholm: Evidence for deep burial diagenesis. Bulletin of the Geological Society of Denmark, 33, 415–435.
  • 15. Camp, W.K., Diaz, E. and Wawak, B. 2013. Electron Microscopy of Shale Hydrocarbon Reservoirs. American Association of Petroleum Geologists Memoir, 102, 260 pp.
  • 16. Canfield, D.E. 2001. Biogeochemistry of sulphur isotopes. In: Valley, J.W. and Cole, D.R. (Eds), Stable Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, pp. 607–633. Geological Society of America; Washington.
  • 17. Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H. and Zak, I. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28, 199–260.
  • 18. Cody, J.D., Hutcheon, I.E. and Krouse, H.R. 1999. Fluid flow, mixing and the origin of CO2 and H2S by bacterial sulphate reduction in the Mannville Group, southern Alberta, Canada. Marine and Petroleum Geology, 16, 495–510.
  • 19. Coleman, M.L. and Raiswell, R. 1993. Microbial mineralization of organic matter: mechanisms of self-organization and inferred rates of precipitation of diagenetic minerals. Philosophical Transactions of the Royal Society A, 344, 69–87.
  • 20. Compton, J.S. 1988. Degree of supersaturation and precipitation of organogenic dolomite. Geology, 16, 318–321.
  • 21. Cotroneo, S., Schiffbauer, J.D., McCoy, V.E., Wortmann, U.G., Darroch, S.A.F., Peng, Y. and Laflamme, M. 2016. A new model of the formation of Pennsylvanian iron carbonate concretions hosting exceptional soft-bodied fossils in Mazon Creek, Illinois. Geobiology, 14, 543–555.
  • 22. Curtis, C.D. and Coleman, M.L. 1986. Controls on the precipitation of early diagenetic calcite, dolomite and siderite concretions in complex depositional sequences. In: Gautier, D.L. (Ed.), Roles of Organic Matter during Diagenesis. SEPM Special Publication, 38, 23–33.
  • 23. Curtis, C.D., Coleman, M.L. and Love, L.G. 1986. Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions. Geochimica et Cosmochimica Acta, 50, 2321–2334.
  • 24. Davies, G.R. and Smith, L.B. 2006. Structurally controlled hydrothermal dolomite reservoir facies: an overview. American Association of Petroleum Geologists Bulletin, 90, 1641–1690.
  • 25. Dean, W.E., Gardner, J.V. and Piper, D.Z. 1997. Inorganic geochemical indicators of glacialonterglacial changes in productivity and anoxia of the California continental margin. Geochimica et Cosmochimica Acta, 21, 4507–4518.
  • 26. Dehairs, F., Chesselet, R. and Jedwab, J. 1980. Discrete suspended particles of barite and the barium cycle in the open ocean. Earth and Planetary Science Letters 49, 529–550.
  • 27. Delle Piane, C., Almqvist, B.S.G., MacRae, C.M., Torpy, A., Mory, A.J. and Dewhurst, D.N. 2015. Texture and diagenesis of Ordovician shale from the Canning Basin, Western Australia: Implications for elastic anisotropy and geomechanical properties. Marine and Petroleum Geology, 59, 56–71.
  • 28. Dix, G.R. and Mullins, H.T. 1987. Shallow, subsurface growth and burial alteration of Middle Devonian calcite concretions. Journal of Sedimentary Petrology, 57, 140–152.
  • 29. El Albani, A., Vachard, D., Kuhnt, W. and Thurow, J. 2001. The role of diagenetic carbonate concretions in the preservation of the original sedimentary record. Sedimentology, 48, 875–886.
  • 30. Galimov, E.M. 1980. 13C/12C in kerogen. In: Durand, B. (Ed.), Kerogen – Insoluble Organic Matter from Sedimentary Rocks, pp. 271–299. Editions Technip; Paris.
  • 31. Gariboldi, K., Gioncada, A., Bosio, G., Malinverno, E., Di Celma, C., Tinelli, C., Cantalamessa, G., Landini, W., Urbina, M. and Bianucci, G. 2015. The dolomite nodules enclosing fossil marine vertebrates in the East Pisco Basin, Peru: field and petrographic insights into the Lagerstätte formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 438, 81–95.
  • 32. Giese, U. and Köppen, S. 2001. Detrital record of Early Palaeozoic and Devonian clastic sediments at the southwestern border of the Fennoscandian Shield – provenance signals for a Caledonian geodynamic evolution. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 222, 215–251.
  • 33. Grotek I. 2009. Petrological characteristics and thermal maturity of organic matter in Silurian sediments of the East European Craton. Przegląd Geologiczny, 57, 300–301. [In Polish, summary in English]
  • 34. Heimhofer, U., Meister, P., Bernasconi, S.M., Ariztegui, D., Martill, D.M., Rios-Netto, A.M. and Schwark, L. 2017. Isotope and elemental geochemistry of black shale-hosted fossiliferous concretions from the Cretaceous Santana Formation fossil Lagerstätte (Brazil). Sedimentology, 64, 150–167.
  • 35. Hendry, J.P., Pearson, M.J., Trewin, N.H. and Fallick, A.E. 2006. Jurassic septarian concretions from NW Scotland record interdependent bacterial, physical and chemical processes of marine mudrock diagenesis. Sedimentology, 53, 537–565.
  • 36. Hennessy, J. and Knauth, P. 1985. Isotopic variations in dolomite concretions from the Monterey Formation, California. Journal of Sedimentary Petrology, 55, 120–130.
  • 37. Hesse, R., Shah, J. and Islam, S. 2004. Physical and chemical growth conditions of Ordovician organogenic deep-water dolomite concretions: implications for the δ18O of Early Palaeozoic sea water. Sedimentology, 51, 601–625.
  • 38. Hudson, J.D., Coleman, M.L., Barreiro, B.A. and Hollingworth, N.T.J. 2001. Septarian concretions from the Oxford Clay (Jurassic, England, UK): involvement of original marine and multiple external pore fluids. Sedimentology, 48, 507–531.
  • 39. Irwin, H., Curtis, C. and Coleman, M. 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic carbon-rich sediments. Nature, 269, 209–213.
  • 40. Jaworowski, K. 1971. Sedimentary structures of the Upper Silurian siltstones in the Polish Lowland. Acta Geologica Polonica, 21, 519–571.
  • 41. Jaworowski, K. 2000. Facies analysis of the Silurian shale-siltstone succession in Pomerania (northern Poland). Geological Quarterly, 44, 297–315.
  • 42. Kiriakoulakis, K., Marshall, J.D. and Wolff, G.A. 2000. Biomarkers in a Lower Jurassic concretion from Dorset (UK). Journal of the Geological Society, 157, 207–220.
  • 43. Kosakowski, P., Papiernik, B., Wróbel, M. and Machowski, G. 2015. Quantitative Description of the Selected Features of Silurian–Ordovician Shale Gas Petroleum System in Poland. In: 77th EAGE Conference and Exhibition 2015 IFEMA Madrid, Spain, 1–4 June 2015, We P3 05.
  • 44. Lash, G.G. and Blood, D. 2004. Geochemical and textural evidence for early (shallow) diagenetic growth of stratigraphically confined carbonate concretions, Upper Devonian Rhinestreet black shale, western New York. Chemical Geology, 206, 407– 424.
  • 45. Lehmann, M.F., Bernasconi, S.M., Barbieri, A. and McKenzie, J.A. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta, 66, 3573–3584.
  • 46. Loyd, S.J., Corsetti, F.A., Eiler, J.M. and Tripati, A.K. 2012. Determining the diagenetic conditions of concretion formation: Assessing temperatures and pore waters using clumped isotopes. Journal of Sedimentary Research, 82, 1006–1016.
  • 47. Lüning, S., Craig, J., Loydell, D.K., Storch, P. and Fitches, B. 2000. Lower Silurian ‘hot shales’ in North Africa and Arabia: regional distribution and depositional model. Earth-Science Reviews, 49, 121–200.
  • 48. Macquaker, J.H.S., Taylor, K.G., Keller, M. and Polya, D. 2014. Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks: Implications for predicting unconventional reservoir attributes of mudstones. American Association of Petroleum Geologists Bulletin, 98, 587–603.
  • 49. Majewski, W. 2000. Middle Jurassic concretions from Częstochowa (Poland) as indicators of sedimentation rates. Acta Geologica Polonica, 50, 431–439.
  • 50. Malec, J., Kuleta, M. and Migaszewski, Z.M. 2016. Lithologicpetrographic characterization of Silurian rocks in the Niestachów profile (Holy Cross Mountains). Annales Societatis Geologorum Poloniae, 86, 85–110.
  • 51. Mazur, S., Mikolajczak, M., Krzywiec, P., Malinowski, M., Lewandowski, M. and Buffenmyer, V. 2016. Pomeranian Caledonides, NW Poland – A collisional suture or thinskinned fold-and-thrust belt? Tectonophysics, 692, 29–43.
  • 52. McBride, E.F. 1988. Contrasting diagenetic histories of concretions and host rock, Lion Mountain Sandstone (Cambrian), Texas. Geological Society of America Bulletin, 100, 1803–1810.
  • 53. McCann, T. 1996. Silurian facies from the G-14 well, offshore Northern Germany. Zeitschrift der Deutschen Geologischen Gesellschaft, 147, 209–219.
  • 54. Meister, P., Gutjahr, M., Frank, M., Bernasconi, S.M., Vasconcelos, C. and McKenzie, J.A. 2011. Dolomite formation within the methanogenic zone induced by tectonically driven fluids in the Peru accretionary prism. Geology, 39, 563–566.
  • 55. Melchin, M.J., Sadler, P.M., Cramer, B.D., Cooper, R.A., Gradstein, F.M. and Hammer, O. 2012. The Silurian Period. In: Gradstein, F.M. et al. (Eds), The Geologic Time Scale 2012, pp. 525–558. Elsevier; Amsterdam.
  • 56. Modliński, Z. 2010. Paleogeological Atlas of the sub-Permian Paleozoic of the East European Craton in Poland and neighbouring ares 1 : 2 000 000. Państwowy Instytut Geologiczny; Warszawa.
  • 57. Modliński, Z. and Podhalańska, T. 2010. Outline of the lithology and depositional features of the lower Paleozoic strata in the Polish part of the Baltic region. Geological Quarterly, 54, 109–121.
  • 58. Modliński, Z., Szymański, B. and Teller, L. 2006. The Silurian lithostratigraphy of the Polish part of the Peri-Baltic depression (N Poland). Przegląd Geologiczny, 54, 787–796. [In Polish, summary in English]
  • 59. Morad, S. and Eshete, M. 1990. Petrology, chemistry and diagenesis of calcite concretions in Silurian shales from central Sweden. Sedimentary Geology, 66, 113–134.
  • 60. Morse, J.W. and Casey, W.H. 1988. Ostwald processes and mineral paragenesis in sediments. American Journal of Science, 288, 537–560.
  • 61. Mozley, P.S. 1996. The internal structure of carbonate concretions in mudrocks: a critical evaluation of the conventional concentric model of concretion growth. Sedimentary Geology, 103, 85–91.
  • 62. Mozley, P.S. and Burns, S.J. 1993. Oxygen and carbon isotopic composition of marine carbonate concretions: an overview. Journal of Sedimentary Petrology, 63, 73–83.
  • 63. Page, A.A., Zalasiewicz, J.A., Williams, M. and Popov, L.E. 2007. Were transgressive black shales a negative feedback modulating glacioeustasy in the Early Palaeozoic Icehouse? In: Williams, M., Haywood, A.M., Gregory, F.J. and Schmidt, D.N. (Eds), Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, pp. 123–156. The Micropalaeontological Society, Special Publications; London.
  • 64. Passey, Q.R., Bohacs, K.M., Esch, W.L., Klimentidis, R. and Sinha, S. 2010. From oil-prone source rock to gas-producing shale reservoir – geologic and petrophysical characterization of unconventional shale-gas reservoirs, CPS/SPE International Oil and Gas Conference and Exhibition, pp. 1–29. Society of Petroleum Engineers; Beijing.
  • 65. Paytan, A., Gray, E.T., Ma, Z., Erhardt, A. and Faul, K. 2011. Application of sulphur isotopes for stratigraphic correlation. Isotopes in Environmental and Health Studies, 48, 195–206.
  • 66. Paytan, A., Kastner, M. and Chavez, F.P. 1996. Glacial to interglacial fluctuations of productivity in the equatorial Pacific as indicated by marine barite. Science, 274, 1355–1357.
  • 67. Paytan, A., Mearon, S., Cobb, K. and Kastner M. 2002. Origin of marine barite deposits: Sr and S isotope characterisation. Geology, 2002, 747–750.
  • 68. Pearson, M.J., Hendry, J.P., Taylor, C.W. and Russell, M.A. 2005. Fatty acids in sparry calcite fracture fills and microsparite cement of septarian diagenetic concretions. Geochimca et Cosmochimica Acta, 69, 1773–1786.
  • 69. Peckmann, J. and Thiel, V. 2004. Carbon cycling at ancient methane-seeps. Chemical Geology, 205, 443–467.
  • 70. Peters, K.E., Walters, O.C. and Moldowan, J.M. 2005. The Biomarker Guide, 2nd edition, 471 p. Cambridge University Press; Cambridge.
  • 71. Podhalańska, T. 2009. The Late Ordovician Gondwana glaciation – a record of environmental changes in the depositional succesion of the Baltic Depression (Northern Poland). Prace Państwowego Instytutu Geologicznego, 193, 1–132.
  • 72. Podhalańska, T., Modliński, Z. and Szymański, B. 2010. Nowelizacja stratygrafii syluru brzeżnej części kratonu wschodnioeuropejskiego (obszar Lubelszczyzny i Podlasia). Narodowe Archiwum Geologiczne; Warszawa.
  • 73. Poprawa, P. 2006. Development of the Caledonian collision zone along the western margin of Baltica and its relation to the foreland basin. Prace Państwowego Instytutu Geologicznego, 186, 189–214.
  • 74. Poprawa, P. 2010. Shale gas potential of the Lower Palaeozoic complex in the Baltic and Lublin-Podlasie basins (Poland). Przegląd Geologiczny, 58, 226–249. [In Polish, summary in English]
  • 75. Poprawa, P., Sliaupa, S., Stephenson, R. and Lazauskiene, J. 1999. Late Vendian–Early Palæozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. Tectonophysics, 314, 219–239.
  • 76. Porębski, S.J., Prugar, W. and Zacharski, J. 2013. Silurian shales of the East European Platform in Poland – some exploration problems. Przegląd Geologiczny, 61, 468–477. [In Polish, summary in English]
  • 77. Prokoph, A., Shields, G.A. and Veizer, J. 2008. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Science Reviews, 87, 113–133.
  • 78. Raiswell, R. 1988. Evidence for surface reaction-controlled growth of carbonate concretions in shales. Sedimentology, 35, 571–575.
  • 79. Raiswell, R., Bottrell, S.H., Dean, S.P., Marschall, J.D., Carr, A. and Hatfield, D. 2002. Isotopic constraints on growth conditions of multiphase calcite-pyrite-barite concretions in Carboniferous mudstones. Sedimentology, 49, 237–254.
  • 80. Raiswell, R. and Fisher, J. 2000. Mudrock-hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition. Journal of the Geological Society, 157, 239–251.
  • 81. Reitner, J., Peckmann, J., Blumenberg, M., Michaelis, W., Reimer, A. and Thiel, V. 2005. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 18–30.
  • 82. Riedinger, N., Kasten, S., Gröger, J., Franke, C. and Pleifer, K. 2006. Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin. Earth and Planetary Science Letters, 241, 876–887.
  • 83. Ritger, S., Carson, B. and Suess, E. 1987. Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geological Society of America Bulletin, 98, 147–156.
  • 84. Rosenbaum, J. and Sheppard, S.M. 1986. An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochimica et Cosmochimica Acta, 50, 1147–1150.
  • 85. Ross, D.J.K. and Bustin, R.M. 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleoum Geology, 26, 916–927.
  • 86. Saigal, G.C. and Bjørlykke, K. 1987. Carbonate cements in clastic reservoir rocks from offshore Norway – relationships between isotopic composition, textural development and burial depth. In: Marshall, J.D. (Ed.), Diagenesis of Sedimentary Sequences. Geological Society, London, Special Publications, 36, 313–324.
  • 87. Scotchman, I.C. 1991. The geochemistry of concretions from the Kimmeridge Clay Formation of southern and eastern England. Sedimentology, 38, 79–106.
  • 88. Scotchman, I.C., Carr, A.D. and Astin, T.R. 2000. Porefluid evolution in the Kimmeridge Clay Formation of the UK Outer Moray Firth. Journal of Geochemical Exploration, 69-70, 53–57.
  • 89. Sellés-Martínez, J. 1996. Concretion morphology, classification and genesis. Earth-Science Reviews, 41, 177–210.
  • 90. Sirat, M., Al-Aasm, I.S., Morad, S., Aldahan, A., Al-Jallad, O., Ceriani, A., Morad, D., Mansurbeg, H. and Al-Suwaidi, A. 2016. Saddle dolomite and calcite cements as records of fluid flow during basin evolution: Paleogene carbonates, United Arab Emirates. Marine and Petroleum Geology, 74, 71–91.
  • 91. Slatt, R.M. 2011. Important geological properties of unconventional resource shales. Central European Journal of Geosciences, 3, 435–448.
  • 92. Strauss, H. 1997. The isotopic composition of sedimentary sulphur through time. Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 97–118.
  • 93. Torres, M.E., Brumsack, H.J., Bohrmann, G. and Emeis, K.C. 1996. Barite fronts in continental margin sediments: A new look at barium remobilisation in the zone of sulphate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology, 127, 125–139.
  • 94. Trela, W., Podhalańska, T., Smolarek, J. and Marynowski, L. 2016. Llandovery green/grey and black mudrock facies of the northern Holy Cross Mountains (Poland) and their relation to early Silurian sea-level changes and benthic oxygen level. Sedimentary Geology, 342, 66–77.
  • 95. Wetzel, A. 1992. An apparent concretionary paradox. Zentralblatt für Geologie und Paläontologie Teil I H, 12, 2823–2830.
  • 96. Whiticar, M.J., Faber, E. and Schoell, M. 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-Isotope evidence. Geochimica et Cosmochimica Acta, 50, 693–709.
  • 97. Wiese, K. and Kvenvolden, K.A. 1993. Introduction to Microbial and Thermal Methane. In: Howell, D.G. (Ed.), The future of energy gases. U.S. Geological Survey Professional Paper, 1570, 13–20.
  • 98. Więcław, D., Kotarba, M.J., Kosakowski, P., Kowalski, A. and Grotek, I. 2010. Habitat and hydrocarbon potential of the Lower Paleozoic source rocks in the Polish part of the Baltic region. Geological Quarterly, 54, 159–182.
  • 99. Wignall, P. B. and Newton, R. 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science, 298, 537–552.
  • 100. Wilkin, R.T., Barnes, H.L. and Brantley, S.L. 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta, 60, 3897–3912.
  • 1. Al-Aasm, I. 2003. Origin and characterization of hydrothermal dolomite in the Western Canada Sedimentary Basin. Journal of Geochemical Exploration, 78-79, 9-15.
  • 2. Azmy, K., Veizer, J., Bassett, M.G. and Copper, P. 1998. Oxygen and carbon isotopic composition of Silurian brachiopods: Implications for coeval seawater and glaciations. Geological Society of America Bulletin, 110, 1499-1512.
  • 3. Baker, P.A. and Kastner, M. 1981. Constraints on the formation of sedimentary dolomite. Science, 213, 214-216.
  • 4. Bennett, R.H., O’Brien, N.R. and Hulbert, M.H. 1991. Determinants of clay and shale microfabric signatures: process and mechanisms. In: Bennett, R.H., O’Brien, N.R. and Hulbert, M.H. (Eds), Microstructure of Fine-Grained Sediments, pp. 5-32. Springer; Berlin, Heidelberg, New York.
  • 5. Bishop, J.K.B. 1984. The barite-opal organic carbon association in oceanic particulate matter. Nature, 332, 341-343.
  • 6. Blome, C.D. and Albert, N.R. 1985. Carbonate concretions: An ideal sedimentary host for microfossils. Geology, 13, 212-215.
  • 7. Bojanowski, M.J. 2014. Authigenic dolomites in the Eocene-Oligocene organic carbon-rich shales from the Polish Outer Carpathians: evidence of past gas production and possible gas hydrate formation in the Silesian basin. Marine and Petroleum Geology, 51, 117-135.
  • 8. Bojanowski, M.J., Barczuk, A. and Wetzel, A. 2014. Deep-burial alteration of early-diagenetic carbonate concretions formed in Palaeozoic deep-marine greywackes and mudstones (Bardo Unit, Sudetes Mountains, Poland). Sedimentology, 61, 1211-1239.
  • 9. Bojanowski, M.J. and Clarkson, E.N.K. 2012. Origin of siderite concretions in microenvironments of methanogenesis developed in sulfate reduction zone: an exception or a rule? Journal of Sedimentary Research, 82, 585-598.
  • 10. Bondioli, J.G., Matos, S.A., Warren, L.V., Assine, M.L., Riccomini, C. and Simões, M.G. 2015. The interplay between event and background sedimentation and the origin of fossil-rich carbonate concretions: a case study in Permian rocks of the Paraná Basin, Brazil. Lethaia, 48, 522-539.
  • 11. Botor, D., Golonka, J., Zając, J., Papiernik, B and Guzy, P. 2017. Generowanie i ekspulsja węglowodorów w utworach dolnopaleozoicznych w obszarze SW skłonu wschodnioeuropejskiej platformy prekambryjskiej w NE Polsce: implikacje dla poszukiwań złóż niekonwencjonalnych. In: Golonka, J. and Bębenek, S. (Eds), Opracowanie map zasięgu, biostratygrafia utworów dolnego paleozoiku oraz analiza ewolucji tektonicznej przykrawędziowej strefy platformy wschodnioeuropejskiej dla oceny rozmieszczenia niekonwencjonalnych złóż węglowodorów, pp. 423-451. Arka; Cieszyn.
  • 12. Bottrell, S.H., Parkes, J., Cragg, B.A. and Raiswell, R. 2000. Isotopic evidence for deep pyrite oxidation and stimulation of bacterial sulphate reduction. Journal of the Geological Society, 157, 711-714.
  • 13. Bréhéret, J.-G. and Brumsack, H.-J. 2000. Barite concretions as evidence of pauses in sedimentation in the Marnes Bleues Formation of the Vocontian Basin (SE France). Sedimentary Geology, 130, 205-228.
  • 14. Buchardt, B. and Nielsen, A.T. 1985. Carbon and oxygen isotope composition of Cambro-Silurian limestone and anthraconite from Bornholm: Evidence for deep burial diagenesis. Bulletin of the Geological Society of Denmark, 33, 415-435.
  • 15. Camp, W.K., Diaz, E. and Wawak, B. 2013. Electron Microscopy of Shale Hydrocarbon Reservoirs. American Association of Petroleum Geologists Memoir, 102, 260 pp.
  • 16. Canfield, D.E. 2001. Biogeochemistry of sulphur isotopes. In: Valley, J.W. and Cole, D.R. (Eds), Stable Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, pp. 607-633. Geological Society of America; Washington.
  • 17. Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H. and Zak, I. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28, 199-260.
  • 18. Cody, J.D., Hutcheon, I.E. and Krouse, H.R. 1999. Fluid flow, mixing and the origin of CO2 and H2S by bacterial sulphate reduction in the Mannville Group, southern Alberta, Canada. Marine and Petroleum Geology, 16, 495-510.
  • 19. Coleman, M.L. and Raiswell, R. 1993. Microbial mineralization of organic matter: mechanisms of self-organization and inferred rates of precipitation of diagenetic minerals. Philosophical Transactions of the Royal Society A, 344, 69-87.
  • 20. Compton, J.S. 1988. Degree of supersaturation and precipitation of organogenic dolomite. Geology, 16, 318-321.
  • 21. Cotroneo, S., Schiffbauer, J.D., McCoy, V.E., Wortmann, U.G., Darroch, S.A.F., Peng, Y. and Laflamme, M. 2016. A new model of the formation of Pennsylvanian iron carbonate concretions hosting exceptional soft-bodied fossils in Mazon Creek, Illinois. Geobiology, 14, 543-555.
  • 22. Curtis, C.D. and Coleman, M.L. 1986. Controls on the precipitation of early diagenetic calcite, dolomite and siderite concretions in complex depositional sequences. In: Gautier, D.L. (Ed.), Roles of Organic Matter during Diagenesis. SEPM Special Publication, 38, 23-33.
  • 23. Curtis, C.D., Coleman, M.L. and Love, L.G. 1986. Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions. Geochimica et Cosmochimica Acta, 50, 2321-2334.
  • 24. Davies, G.R. and Smith, L.B. 2006. Structurally controlled hydrothermal dolomite reservoir facies: an overview. American Association of Petroleum Geologists Bulletin, 90, 1641-1690.
  • 25. Dean, W.E., Gardner, J.V. and Piper, D.Z. 1997. Inorganic geochemical indicators of glacialonterglacial changes in productivity and anoxia of the California continental margin. Geochimica et Cosmochimica Acta, 21, 4507-4518.
  • 26. Dehairs, F., Chesselet, R. and Jedwab, J. 1980. Discrete suspended particles of barite and the barium cycle in the open ocean. Earth and Planetary Science Letters 49, 529-550.
  • 27. Delle Piane, C., Almqvist, B.S.G., MacRae, C.M., Torpy, A., Mory, A.J. and Dewhurst, D.N. 2015. Texture and diagenesis of Ordovician shale from the Canning Basin, Western Australia: Implications for elastic anisotropy and geomechanical properties. Marine and Petroleum Geology, 59, 56-71.
  • 28. Dix, G.R. and Mullins, H.T. 1987. Shallow, subsurface growth and burial alteration of Middle Devonian calcite concretions. Journal of Sedimentary Petrology, 57, 140-152.
  • 29. El Albani, A., Vachard, D., Kuhnt, W. and Thurow, J. 2001. The role of diagenetic carbonate concretions in the preservation of the original sedimentary record. Sedimentology, 48, 875-886.
  • 30. Galimov, E.M. 1980. 13C/12C in kerogen. In: Durand, B. (Ed.), Kerogen - Insoluble Organic Matter from Sedimentary Rocks, pp. 271-299. Editions Technip; Paris.
  • 31. Gariboldi, K., Gioncada, A., Bosio, G., Malinverno, E., Di Celma, C., Tinelli, C., Cantalamessa, G., Landini, W., Urbina, M. and Bianucci, G. 2015. The dolomite nodules enclosing fossil marine vertebrates in the East Pisco Basin, Peru: field and petrographic insights into the Lagerstätte formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 438, 81-95.
  • 32. Giese, U. and Köppen, S. 2001. Detrital record of Early Palaeozoic and Devonian clastic sediments at the southwestern border of the Fennoscandian Shield - provenance signals for a Caledonian geodynamic evolution. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 222, 215-251.
  • 33. Grotek I. 2009. Petrological characteristics and thermal maturity of organic matter in Silurian sediments of the East European Craton. Przegląd Geologiczny, 57, 300-301. [In Polish, summary in English]
  • 34. Heimhofer, U., Meister, P., Bernasconi, S.M., Ariztegui, D., Martill, D.M., Rios-Netto, A.M. and Schwark, L. 2017. Isotope and elemental geochemistry of black shale-hosted fossiliferous concretions from the Cretaceous Santana Formation fossil Lagerstätte (Brazil). Sedimentology, 64, 150-167.
  • 35. Hendry, J.P., Pearson, M.J., Trewin, N.H. and Fallick, A.E. 2006. Jurassic septarian concretions from NW Scotland record interdependent bacterial, physical and chemical processes of marine mudrock diagenesis. Sedimentology, 53, 537-565.
  • 36. Hennessy, J. and Knauth, P. 1985. Isotopic variations in dolomite concretions from the Monterey Formation, California. Journal of Sedimentary Petrology, 55, 120-130.
  • 37. Hesse, R., Shah, J. and Islam, S. 2004. Physical and chemical growth conditions of Ordovician organogenic deep-water dolomite concretions: implications for the δ18O of Early Palaeozoic sea water. Sedimentology, 51, 601-625.
  • 38. Hudson, J.D., Coleman, M.L., Barreiro, B.A. and Hollingworth, N.T.J. 2001. Septarian concretions from the Oxford Clay (Jurassic, England, UK): involvement of original marine and multiple external pore fluids. Sedimentology, 48, 507-531.
  • 39. Irwin, H., Curtis, C. and Coleman, M. 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic carbon-rich sediments. Nature, 269, 209-213.
  • 40. Jaworowski, K. 1971. Sedimentary structures of the Upper Silurian siltstones in the Polish Lowland. Acta Geologica Polonica, 21, 519-571.
  • 41. Jaworowski, K. 2000. Facies analysis of the Silurian shale-siltstone succession in Pomerania (northern Poland). Geological Quarterly, 44, 297-315.
  • 42. Kiriakoulakis, K., Marshall, J.D. and Wolff, G.A. 2000. Biomarkers in a Lower Jurassic concretion from Dorset (UK). Journal of the Geological Society, 157, 207-220.
  • 43. Kosakowski, P., Papiernik, B., Wróbel, M. and Machowski, G. 2015. Quantitative Description of the Selected Features of Silurian-Ordovician Shale Gas Petroleum System in Poland. In: 77th EAGE Conference and Exhibition 2015 IFEMA Madrid, Spain, 1-4 June 2015, We P3 05.
  • 44. Lash, G.G. and Blood, D. 2004. Geochemical and textural evidence for early (shallow) diagenetic growth of stratigraphically confined carbonate concretions, Upper Devonian Rhinestreet black shale, western New York. Chemical Geology, 206, 407- 424.
  • 45. Lehmann, M.F., Bernasconi, S.M., Barbieri, A. and McKenzie, J.A. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta, 66, 3573-3584.
  • 46. Loyd, S.J., Corsetti, F.A., Eiler, J.M. and Tripati, A.K. 2012. Determining the diagenetic conditions of concretion formation: Assessing temperatures and pore waters using clumped isotopes. Journal of Sedimentary Research, 82, 1006-1016.
  • 47. Lüning, S., Craig, J., Loydell, D.K., Storch, P. and Fitches, B. 2000. Lower Silurian ‘hot shales’ in North Africa and Arabia: regional distribution and depositional model. Earth-Science Reviews, 49, 121-200.
  • 48. Macquaker, J.H.S., Taylor, K.G., Keller, M. and Polya, D. 2014. Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks: Implications for predicting unconventional reservoir attributes of mudstones. American Association of Petroleum Geologists Bulletin, 98, 587-603.
  • 49. Majewski, W. 2000. Middle Jurassic concretions from Częstochowa (Poland) as indicators of sedimentation rates. Acta Geologica Polonica, 50, 431-439.
  • 50. Malec, J., Kuleta, M. and Migaszewski, Z.M. 2016. Lithologicpetrographic characterization of Silurian rocks in the Niestachów profile (Holy Cross Mountains). Annales Societatis Geologorum Poloniae, 86, 85-110.
  • 51. Mazur, S., Mikolajczak, M., Krzywiec, P., Malinowski, M., Lewandowski, M. and Buffenmyer, V. 2016. Pomeranian Caledonides, NW Poland - A collisional suture or thinskinned fold-and-thrust belt? Tectonophysics, 692, 29-43.
  • 52. McBride, E.F. 1988. Contrasting diagenetic histories of concretions and host rock, Lion Mountain Sandstone (Cambrian), Texas. Geological Society of America Bulletin, 100, 1803-1810.
  • 53. McCann, T. 1996. Silurian facies from the G-14 well, offshore Northern Germany. Zeitschrift der Deutschen Geologischen Gesellschaft, 147, 209-219.
  • 54. Meister, P., Gutjahr, M., Frank, M., Bernasconi, S.M., Vasconcelos, C. and McKenzie, J.A. 2011. Dolomite formation within the methanogenic zone induced by tectonically driven fluids in the Peru accretionary prism. Geology, 39, 563-566.
  • 55. Melchin, M.J., Sadler, P.M., Cramer, B.D., Cooper, R.A., Gradstein, F.M. and Hammer, O. 2012. The Silurian Period. In: Gradstein, F.M. et al. (Eds), The Geologic Time Scale 2012, pp. 525-558. Elsevier; Amsterdam.
  • 56. Modliński, Z. 2010. Paleogeological Atlas of the sub-Permian Paleozoic of the East European Craton in Poland and neighbouring ares 1 : 2 000 000. Państwowy Instytut Geologiczny; Warszawa.
  • 57. Modliński, Z. and Podhalańska, T. 2010. Outline of the lithology and depositional features of the lower Paleozoic strata in the Polish part of the Baltic region. Geological Quarterly, 54, 109-121.
  • 58. Modliński, Z., Szymański, B. and Teller, L. 2006. The Silurian lithostratigraphy of the Polish part of the Peri-Baltic depression (N Poland). Przegląd Geologiczny, 54, 787-796. [In Polish, summary in English]
  • 59. Morad, S. and Eshete, M. 1990. Petrology, chemistry and diagenesis of calcite concretions in Silurian shales from central Sweden. Sedimentary Geology, 66, 113-134.
  • 60. Morse, J.W. and Casey, W.H. 1988. Ostwald processes and mineral paragenesis in sediments. American Journal of Science, 288, 537-560.
  • 61. Mozley, P.S. 1996. The internal structure of carbonate concretions in mudrocks: a critical evaluation of the conventional concentric model of concretion growth. Sedimentary Geology, 103, 85-91.
  • 62. Mozley, P.S. and Burns, S.J. 1993. Oxygen and carbon isotopic composition of marine carbonate concretions: an overview. Journal of Sedimentary Petrology, 63, 73-83.
  • 63. Page, A.A., Zalasiewicz, J.A., Williams, M. and Popov, L.E. 2007. Were transgressive black shales a negative feedback modulating glacioeustasy in the Early Palaeozoic Icehouse? In: Williams, M., Haywood, A.M., Gregory, F.J. and Schmidt, D.N. (Eds), Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, pp. 123-156. The Micropalaeontological Society, Special Publications; London.
  • 64. Passey, Q.R., Bohacs, K.M., Esch, W.L., Klimentidis, R. and Sinha, S. 2010. From oil-prone source rock to gas-producing shale reservoir - geologic and petrophysical characterization of unconventional shale-gas reservoirs, CPS/SPE International Oil and Gas Conference and Exhibition, pp. 1-29. Society of Petroleum Engineers; Beijing.
  • 65. Paytan, A., Gray, E.T., Ma, Z., Erhardt, A. and Faul, K. 2011. Application of sulphur isotopes for stratigraphic correlation. Isotopes in Environmental and Health Studies, 48, 195-206.
  • 66. Paytan, A., Kastner, M. and Chavez, F.P. 1996. Glacial to interglacial fluctuations of productivity in the equatorial Pacific as indicated by marine barite. Science, 274, 1355-1357.
  • 67. Paytan, A., Mearon, S., Cobb, K. and Kastner M. 2002. Origin of marine barite deposits: Sr and S isotope characterisation. Geology, 2002, 747-750.
  • 68. Pearson, M.J., Hendry, J.P., Taylor, C.W. and Russell, M.A. 2005. Fatty acids in sparry calcite fracture fills and microsparite cement of septarian diagenetic concretions. Geochimca et Cosmochimica Acta, 69, 1773-1786.
  • 69. Peckmann, J. and Thiel, V. 2004. Carbon cycling at ancient methane-seeps. Chemical Geology, 205, 443-467.
  • 70. Peters, K.E., Walters, O.C. and Moldowan, J.M. 2005. The Biomarker Guide, 2nd edition, 471 p. Cambridge University Press; Cambridge.
  • 71. Podhalańska, T. 2009. The Late Ordovician Gondwana glaciation - a record of environmental changes in the depositional succesion of the Baltic Depression (Northern Poland). Prace Państwowego Instytutu Geologicznego, 193, 1-132.
  • 72. Podhalańska, T., Modliński, Z. and Szymański, B. 2010. Nowelizacja stratygrafii syluru brzeżnej części kratonu wschodnioeuropejskiego (obszar Lubelszczyzny i Podlasia). Narodowe Archiwum Geologiczne; Warszawa.
  • 73. Poprawa, P. 2006. Development of the Caledonian collision zone along the western margin of Baltica and its relation to the foreland basin. Prace Państwowego Instytutu Geologicznego, 186, 189-214.
  • 74. Poprawa, P. 2010. Shale gas potential of the Lower Palaeozoic complex in the Baltic and Lublin-Podlasie basins (Poland). Przegląd Geologiczny, 58, 226-249. [In Polish, summary in English]
  • 75. Poprawa, P., Sliaupa, S., Stephenson, R. and Lazauskiene, J. 1999. Late Vendian-Early Palæozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. Tectonophysics, 314, 219-239.
  • 76. Porębski, S.J., Prugar, W. and Zacharski, J. 2013. Silurian shales of the East European Platform in Poland - some exploration problems. Przegląd Geologiczny, 61, 468-477. [In Polish, summary in English]
  • 77. Prokoph, A., Shields, G.A. and Veizer, J. 2008. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Science Reviews, 87, 113-133.
  • 78. Raiswell, R. 1988. Evidence for surface reaction-controlled growth of carbonate concretions in shales. Sedimentology, 35, 571-575.
  • 79. Raiswell, R., Bottrell, S.H., Dean, S.P., Marschall, J.D., Carr, A. and Hatfield, D. 2002. Isotopic constraints on growth conditions of multiphase calcite-pyrite-barite concretions in Carboniferous mudstones. Sedimentology, 49, 237-254.
  • 80. Raiswell, R. and Fisher, J. 2000. Mudrock-hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition. Journal of the Geological Society, 157, 239-251.
  • 81. Reitner, J., Peckmann, J., Blumenberg, M., Michaelis, W., Reimer, A. and Thiel, V. 2005. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 18-30.
  • 82. Riedinger, N., Kasten, S., Gröger, J., Franke, C. and Pleifer, K. 2006. Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin. Earth and Planetary Science Letters, 241, 876-887.
  • 83. Ritger, S., Carson, B. and Suess, E. 1987. Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geological Society of America Bulletin, 98, 147-156.
  • 84. Rosenbaum, J. and Sheppard, S.M. 1986. An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochimica et Cosmochimica Acta, 50, 1147-1150.
  • 85. Ross, D.J.K. and Bustin, R.M. 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleoum Geology, 26, 916-927.
  • 86. Saigal, G.C. and Bjørlykke, K. 1987. Carbonate cements in clastic reservoir rocks from offshore Norway - relationships between isotopic composition, textural development and burial depth. In: Marshall, J.D. (Ed.), Diagenesis of Sedimentary Sequences. Geological Society, London, Special Publications, 36, 313-324.
  • 87. Scotchman, I.C. 1991. The geochemistry of concretions from the Kimmeridge Clay Formation of southern and eastern England. Sedimentology, 38, 79-106.
  • 88. Scotchman, I.C., Carr, A.D. and Astin, T.R. 2000. Porefluid evolution in the Kimmeridge Clay Formation of the UK Outer Moray Firth. Journal of Geochemical Exploration, 69-70, 53-57.
  • 89. Sellés-Martínez, J. 1996. Concretion morphology, classification and genesis. Earth-Science Reviews, 41, 177-210.
  • 90. Sirat, M., Al-Aasm, I.S., Morad, S., Aldahan, A., Al-Jallad, O., Ceriani, A., Morad, D., Mansurbeg, H. and Al-Suwaidi, A. 2016. Saddle dolomite and calcite cements as records of fluid flow during basin evolution: Paleogene carbonates, United Arab Emirates. Marine and Petroleum Geology, 74, 71-91.
  • 91. Slatt, R.M. 2011. Important geological properties of unconventional resource shales. Central European Journal of Geosciences, 3, 435-448.
  • 92. Strauss, H. 1997. The isotopic composition of sedimentary sulphur through time. Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 97-118.
  • 93. Torres, M.E., Brumsack, H.J., Bohrmann, G. and Emeis, K.C. 1996. Barite fronts in continental margin sediments: A new look at barium remobilisation in the zone of sulphate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology, 127, 125-139.
  • 94. Trela, W., Podhalańska, T., Smolarek, J. and Marynowski, L. 2016. Llandovery green/grey and black mudrock facies of the northern Holy Cross Mountains (Poland) and their relation to early Silurian sea-level changes and benthic oxygen level. Sedimentary Geology, 342, 66-77.
  • 95. Wetzel, A. 1992. An apparent concretionary paradox. Zentralblatt für Geologie und Paläontologie Teil I H, 12, 2823-2830.
  • 96. Whiticar, M.J., Faber, E. and Schoell, M. 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-Isotope evidence. Geochimica et Cosmochimica Acta, 50, 693-709.
  • 97. Wiese, K. and Kvenvolden, K.A. 1993. Introduction to Microbial and Thermal Methane. In: Howell, D.G. (Ed.), The future of energy gases. U.S. Geological Survey Professional Paper, 1570, 13-20.
  • 98. Więcław, D., Kotarba, M.J., Kosakowski, P., Kowalski, A. and Grotek, I. 2010. Habitat and hydrocarbon potential of the Lower Paleozoic source rocks in the Polish part of the Baltic region. Geological Quarterly, 54, 159-182.
  • 99. Wignall, P. B. and Newton, R. 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science, 298, 537-552.
  • 100. Wilkin, R.T., Barnes, H.L. and Brantley, S.L. 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta, 60, 3897-3912.
Uwagi
EN
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d292da99-092d-4cb0-9e9d-78c25d5ded5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.