PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Maximal classes for rho-upper continuous functions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present some properties of ρ-upper continuous functions. We give a condition equivalent to ρ-upper continuity and find maximal additive and maximal multiplicative classes for the family of ρ-upper continuous functions. These classes depend on whether ρ<1 or ρ=1. To describe maximal additive and maximal multiplicative classes for 1-upper continuous function, we need the notions of sparsity and T*topology.
Wydawca
Rocznik
Strony
69--89
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
  • Institute of Mathematics, Academia Pomeraniensis, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland
  • Institute of Mathematics, Academia Pomeraniensis, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland
Bibliografia
  • [1] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Springer, Berlin, 1978.
  • [2] T. Filipczak, On some abstract density topologies, Real Anal. Exchange 14 (1988/89), 140-166.
  • [3] S. Kowalczyk and K. Nowakowska, A note on ρ-upper continuous functions, Tatra Mt. Math. Publ. 44 (2009), 153-158.
  • [4] S. Kowalczyk and K. Nowakowska, Maximal classes for the family of [λ,ρ-continuous functions, Real Anal. Exchange 36 (2010/11), 307-324.
  • [5] D. N. Sharkel and A. K. De, The proximally continuous integrals, J. Aust. Math. Soc. (A) 31 (1981), 26-45.
  • [6] B. S. Thomson, Real Functions, Lecture Notes in Math. 1170, Springer, Berlin, 1985.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d28e6ab2-a28c-46be-a93b-292cde179d70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.