PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dealing with sediment transport in flood risk management

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flooding events are rising across European watercourses because of changing climatic conditions and anthropogenic pressure. To deal with these events, the European Floods Directive requires the development of flood risk management plans regularly updated every 6 years, where areas affected by flood risk and relative management strategies should be identified. Along the Directive, sediment transport and morphological changes in freshwater environments like rivers are only marginally considered, leading to a possibly wrong estimate of the impact of floods in the case of watercourses in which sediment transport represents a fundamental component. Using the Secchia River in Italy as a case study, the paper compares two numerical simulations performed with the freeware iRIC suite, imposing the same boundary conditions but comparing fixed and mobile bed. The obtained results pinpoint the importance of considering sediment transport in drawing flooding scenarios for alluvial sandy rivers. As suggested by this example, for the incoming revisions of the flood risk management plans, forecasted by 2021, water managers should account for the dynamic behaviour of surface watercourses, considering sediments not only as a driver of pollutants but also as a key aspect that shapes the environment and should be considered in modelling future scenarios and drawing associated management strategies.
Czasopismo
Rocznik
Strony
677--685
Opis fizyczny
Bibliogr. 70 poz.
Twórcy
  • Department of Hydrology and Hydrodynamics, Institute of Geophysics, Polish Academy of Science, Ksiecia Janusza 64, 01‑452 Warsaw, Poland
Bibliografia
  • 1. Albano A, Mancusi L, Abbate A (2017) Improving flood risk analysis for effectively supporting the implementation of flood risk management plans: the case study of “Serio” Valley. Environ Sci Policy 75:158–172. https://doi.org/10.1016/j.envsci.2017.05.017
  • 2. Alfieri L, Salamon P, Bianchi A, Neal J, Bates P, Feyen L (2014) Advances in pan-European flood hazard mapping. Hydrol Process 28(13):4067–4077. https://doi.org/10.1002/hyp.9947
  • 3. Ashida K, Michiue M (1972) Studies on bed load transportation for nonuniform sediment and river bed variation. Disaster Prevention Research Institute Annuals, Kyoto University, No. 14B, pp 259–273
  • 4. Bohorquez P, del Moral-Erencia JD (2017) 100 years of competition between reduction in channel capacity and streamflow during floods. Remote Sens 9(7):727. https://doi.org/10.3390/rs9070727
  • 5. Brierley G, Hooke J (2015) Emerging geomorphic approaches to guide river management practices. Geomorphology 215:1–5. https://doi.org/10.1016/j.geomorph.2015.08.019
  • 6. Brils J (2008) Sediment monitoring and the European Water Framework Directive. Annali dell’Istituto Superiore di Sanita 44(3):218–223
  • 7. Bubeck P, Aerts JCJH, de Moel H, Kreibich H (2016) Preface: flood-risk analysis and integrated management. Nat Hazards Earth Syst Sci 16:1005–1110. https://doi.org/10.5194/nhess-16-1005-2016
  • 8. CIS (2005) Common implementation strategy for the water framework directive (2000/60/EC). Guidance document n. 13: overall approach to the classification of ecological status and ecological potential
  • 9. Costabile P, Macchione F (2015) Enhancing river model set-up for 2-D dynamic flood modelling. Environ Model Softw 67:89–107. https://doi.org/10.1016/j.envsoft.2015.01.009
  • 10. D’Alpaos L, Brath A, Fioravante V, Gottardi G, Mignosa P, Orlandini S (2014) Relazione tecnico-scientifica sulle cause del collasso dell’argine del fiume Secchia avvenuto il giorno 19 gennaio 2014 presso la frazione San Matteo. (Technical-scientific report on the causes of the failure of the Secchia River embankment at the San Matteo village, happened on January 19, 2014) (in Italian)
  • 11. de Moel H, van Alphen J, Aerts JCJH (2009) Flood maps in Europe—methods, availability and use. Nat Hazards Earth Syst Sci 9:289–301. https://doi.org/10.5194/nhess-9-289-2009
  • 12. Einstein HA (1950) The bed-load function for sediment transportation in open channel flows. USDA Soil Conserv Serv Tech Bull 1026:1–71
  • 13. European Union (2000) Directive of the European Parliament and of the council 2000/60/EC establishing a framework for community action in the field of water policy. Official Journal, C513, 23.10.2000
  • 14. European Union (2007) Directive 2007/60/EC of the European Parliament and of the council of 23 October 2007 on the assessment and the management of flood risks. Official Journal, L288, 6.11.2007
  • 15. European Union (2015). EU overview of methodologies used in preparation of flood hazard and flood risk maps. Final report, September 2015
  • 16. Fryirs KA, Brierley GJ (2013) Geomorphic analysis of river systems: an approach to reading the landscape. Wiley, Chichester
  • 17. Guan M, Wright NG, Sleigh PA, Carrivick JL (2015) Assessment of hydro-morphodynamic modelling and geomorphological impacts of a sediment-charged jökulhlaup, at Sólheimajökull, Iceland. J Hydrol 530:336–349. https://doi.org/10.1016/j.jhydrol.2015.09.062
  • 18. Guan M, Carrivick JL, Wright NG, Sleigh PA, Staines KEH (2016) Quantifying the combined effects of multiple extreme floods on river channel geometry and on flood hazards. J Hydrol 538:256–268. https://doi.org/10.1016/j.jhydrol.2016.04.004
  • 19. Gurnell AM, Rinaldi M, Belletti B, Bizzi S, Blamauer B, Braca G, Buijse AD, Bussettini M, Camenen B, Comiti F, Demarchi L, García de Jalón D, González del Tánago M, Grabowski RC, Gunn IDM, Habersack H, Hendriks D, Henshaw A, Klösch M, Lastoria B, Latapie A, Marcinkowski P, Martínez Fernández V, Mosselman E, Mountford JO, Nardi L, Okruszko T, O’Hare MT, Palma M, Percopo C, Surian N, van de Bund W, Weissteiner C, Ziliani L (2016) A multi-scale hierarchical framework for developing understanding of river behaviour to support river management. Aquat Sci 78(1):1–16. https://doi.org/10.1007/s00027-015-0424-5
  • 20. Habersack H, Hein T, Stanica A, Liska I, Mair R, Jäger E, Hauer C, Bradley C (2016) Challenges of river basin management: current status of, and prospects for, the River Danube from a river engineering perspective. Sci Total Environ 543(A):828–845. https://doi.org/10.1016/j.scitotenv.2015.10.123
  • 21. Habersack H, Liébault F, Comiti F (2017) Sediment dynamics in Alpine basins. Geomorphology 291:1–3. https://doi.org/10.1016/j.geomorph.2017.05.014
  • 22. Hajdukiewicz H, Wyzga B, Zawiejska J, Amirowicz A, Oglecki P, Radecki-Pawlik A (2017) Assessment of river hydromorphological quality for restoration purposes: an example of the application of RHQ method to a Polish Carpathian river. Acta Geophys 65(3):423–440. https://doi.org/10.1007/s11600-017-0044-7
  • 23. iRIC Software (2014) Mflow_02 Solver Manuals. iRIC Software. https://i-ric.org/en/
  • 24. James A (1999) Time and the persistence of alluvium: river engineering, fluvial geomorphology, and mining sediment in California. Geomorphology 31(1–4):265–290. https://doi.org/10.1016/S0169-555X(99)00084-7
  • 25. Kallis G, Butler D (2001) The EU Water Framework Directive: measures and Implications. Water Policy 3:125–142. https://doi.org/10.1016/S1366-7017(01)00007-1
  • 26. Korup O, McSaveney MJ, Davies TRH (2004) Sediment generation and delivery from large historic landslides in the Southern Alps, New Zealand. Geomorphology 61(1–2):189–207. https://doi.org/10.1016/j.geomorph.2004.01.001
  • 27. Lane SN, Thorne CR (2007) River processes. In: Thorne CR, Evans EP, Penning-Rowsell EC (eds) Future flooding and coastal erosion risks. ICE Publishing, a division of Thomas Telford Ltd, the commercial arm of the Institution of Civil Engineers, pp 82–99. https://doi.org/10.1680/ffacer.34495.0006
  • 28. Lane SN, Tayefi V, Reid SC, Yu D, Hardy RJ (2007) Interactions between sediment delivery, channel change, climate change and flood risk in a temperate upland environment. Earth Surf Proc Land 32(3):429–446. https://doi.org/10.1002/esp.1404
  • 29. Leopold LB, Maddock T Jr. (1953) The hydraulic geometry of stream channels and some physiographic implications. U.S. Geological Survey, Washington, DC
  • 30. Li W, van Maren DS, Wang ZB, de Vriend HJ, Wu B (2014) Peak discharge increase in hyperconcentrated floods. Adv Water Resour 67:65–77. https://doi.org/10.1016/j.advwatres.2014.02.007
  • 31. Liu C, Walling DE, He Y (2018) Review: the International Sediment Initiative case studies of sediment problems in river basins and their management. Int J Sedim Res 33(2):216–219. https://doi.org/10.1016/j.ijsrc.2017.05.005
  • 32. Lomax H, Pulliam TH, Zingg DW (2013) Fundamentals of computational fluid dynamics. Springer, Berlin
  • 33. Macklin MG, Lewin J (2003) River sediments, great floods and centennial-scale Holocene climate change. J Quat Sci 18(2):101–105. https://doi.org/10.1002/jqs.751
  • 34. Maselli V, Pellegrini C, Del Bianco F, Mercorella A, Nones M, Crose L, Guerrero M, Nittrouer JA (2018) River morphodynamic evolution under dam-induced backwater: an example from the Po River (Italy). J Sediment Res 88(10):1190–1204. https://doi.org/10.2110/jsr.2018.61
  • 35. Merz B, Elmer F, Kunz M, Mühr B, Schröter K, Uhlemann-Elmer S (2014) The extreme flood in June 2013 in Germany. La Houille Blanche 1:5–10. https://doi.org/10.1051/lhb/2014001
  • 36. Nardini A, Sansoni G, Schipani I, Conte G, Goltara A, Boz B, Bizzi S, Polazzo A, Monaci M (2008) The water framework directive: a soap bubble? An integrative proposal: FLEA (Fluvial Ecosystem Assessment). Centro Italiano per la Riqualificazione Fluviale
  • 37. Nelson JM, Shimizu Y, Abe T, Asahi K, Gamou M, Inoue T, Iwasaki T, Kakinuma T, Kawamura S, Kimura I, Kyuka T, McDonald RR, Nabi M, Nakatsugawa M, Simoes FR, Takebayashi H, Watanabe Y (2016) The international river interface cooperative: public domain flow and morphodynamics software for education and applications. Adv Water Resour 93:62–74. https://doi.org/10.1016/j.advwatres.2015.09.017
  • 38. Neuhold C, Stanzel P, Nachtnebel HP (2009) Incorporating river morphological changes to flood risk assessment: uncertainties, methodology and application. Nat Hazards Earth Syst Sci 9:789–799. https://doi.org/10.5194/nhess-9-789-2009
  • 39. Nezu I, Nakagawa H (1993) Turbulence in open-channel flow. IAHR monograph. Belkema, Rotterdam
  • 40. Nied M, Schröter K, Lüdtke S, Nguyen VD, Merz B (2017) What are the hydro-meteorological controls on flood characteristics? J Hydrol 545:310–326. https://doi.org/10.1016/j.jhydrol.2016.12.003
  • 41. Nones M (2015) Implementation of the floods directive in selected EU Member States. Water Environ J 29(2):412–418. https://doi.org/10.1111/wej.12247
  • 42. Nones M, Di Silvio G (2016) Modeling of river width variations based on hydrological, morphological, and biological dynamics. J Hydraul Eng 142(7):04016012. https://doi.org/10.1061/(asce)hy.1943-7900.0001135
  • 43. Nones M, Pescaroli G (2016) Implications of cascading effects for the EU floods directive. Int J River Basin Manag 14(2):195–204. https://doi.org/10.1080/15715124.2016.1149074
  • 44. Nones M, Gerstgraser C, Wharton G (2017) Consideration of hydromorphology and sediment in the implementation of the EU water framework and floods directives: a comparative analysis of selected EU member states. Water Environ J 31(3):324–329. https://doi.org/10.1111/wej.12247
  • 45. Nones M, Pugliese A, Domeneghetti A, Guerrero M (2018) Po River morphodynamics modelled with the open-source code iRIC. In: Kalinowska M, Mrokowska M, Rowiński P (eds) Free surface flows and transport processes. GeoPlanet: earth and planetary sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-70914-7_22
  • 46. Norén V, Hedelin B, Nyberg L, Bishop K (2016) Flood risk assessment—practices in flood prone Swedish municipalities. Int J Disaster Risk Reduct 18:206–217. https://doi.org/10.1016/j.ijdrr.2016.07.003
  • 47. O’Connell PE, Beven KJ, Carney JN, Clements RO, Ewen J, Fowler H, Harris GL, Hollis J, Morris J, O’Donnell GM, Packman JC, Parkin A, Quinn PF, Rose SC, Shepher M, Tellier S (2005) Review of impacts of rural land use and management on flood generation: impact study report. Department of the Environment, Farming and Rural Affairs R&D Technical Report, FD2114/TR
  • 48. Pescaroli G, Nones M (2016) Cascading events, technology and the floods directive: future challenges. In: Proceedings of the 3rd European conference on flood risk management, FLOODrisk 2016, Lyon, France. E3S Web Of Conference, 7, 07003. https://doi.org/10.1051/e3sconf/20160707003
  • 49. Pescaroli G, Nones M (2018) Integrating cascading effects of floods in policy making: a case study for Emilia Romagna, Italy. In: Proceedings of the 5th IAHR Europe Congress, Trento, Italy. https://doi.org/10.3850/978-981-11-2731-1_291-cd
  • 50. Pinter N, Heine RA (2005) Hydrodynamic and morphodynamic response to river engineering documented by fixed-discharge analysis, Lower Missouri River, USA. J Hydrol 302(1–4):70–91. https://doi.org/10.1016/j.jhydrol.2004.06.039
  • 51. Pugliese A (2017) Ponte Motta flooding event of January 2014: calibration and validation of an iRIC model. Personal communication
  • 52. Radice A, Longoni L, Papini M, Brambilla D, Ivanov VI (2016) Generation of a design flood-event scenario for a mountain river with intense sediment transport. Water 8(12):597. https://doi.org/10.3390/w8120597
  • 53. Rickenmann D, Badoux A, Hunzinger L (2015) Significance of sediment transport processes during piedmont floods: the 2005 flood events in Switzerland. Earth Surf Proc Land 41(2):224–230. https://doi.org/10.1002/esp.3835
  • 54. Roos MMD, Hartmann TT, Spit TTJM, Johann GG (2017) Constructing risks—internalisation of flood risks in the flood risk management plan. Environ Sci Policy 74:23–29. https://doi.org/10.1016/j.envsci.2017.04.007
  • 55. Rouse H (1937) Modern conception of the mechanics of turbulence. Trans ASCE 102:463–543
  • 56. Sayers PB, Hall JW, Meadowcroft IC (2002) Towards risk-based flood hazard management in the UK. Proc Inst Civil Eng Civil Eng 150(5):36–42
  • 57. Schumm SA, Lichty R (1965) Time, space, and causality in geomorphology. Am J Sci 263(2):110–119. https://doi.org/10.2475/ajs.263.2.110
  • 58. Singh VP (2003) On the theories of hydraulic geometry. Int J Sedim Res 18(3):196–218
  • 59. Sinnakaudan SK, Ab Ghani A, Ahnmad MSS, Zakaria NA (2003) Flood risk mapping for Pari River incorporating sediment transport. Environ Model Softw 18(2):119–130. https://doi.org/10.1016/S1364-8152(02)00068-3
  • 60. Slater LJ (2016) To what extent have changes in channel capacity contributed to flood hazard trends in England and Wales? Earth Surf Proc Land 41:1115–1128. https://doi.org/10.1002/esp.3927
  • 61. Slater LJ, Singer MB, Kirchner JW (2015) Hydrologic versus geomorphic drivers of trends in flood hazard. Geophys Res Lett 42(2):370–376. https://doi.org/10.1002/2014GL062482
  • 62. Staines KEH, Carrivick JL (2015) Geomorphological impact and morphodynamic effects on flow conveyance of the 1999 jökulhlaup at sólheimajökull, Iceland. Earth Surf Process Landf 40(10):1401–1416. https://doi.org/10.1002/esp.3750
  • 63. Stover SC, Montgomery DR (2001) Channel change and flooding, Skokomish River, Washington. J Hydrol 243(3–4):272–286. https://doi.org/10.1016/S0022-1694(00)00421-2
  • 64. van Rijn LC (1984) Sediment transport, part II: suspended load transport. J Hydraul Eng 110(11):1613–1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)
  • 65. Walter RC, Merritts DJ (2008) Natural streams and the legacy of water-powered mills. Science 319(5861):299–304. https://doi.org/10.1126/science.1151716
  • 66. Warner BP, Gartner JD, Hatch CE (2018) Fluvial geomorphic assessment and river corridor mapping as flood risk management tools in Massachusetts, USA. J Flood Risk Manag 11(S2):S1100–S1104. https://doi.org/10.1111/jfr3.12328
  • 67. Wheater H, Evans E (2009) Land use, water management and future flood risk. Land Use Policy 265(1):S251–S264. https://doi.org/10.1016/j.landusepol.2009.08.019
  • 68. Wohl E, Bledsoe BP, Jacobson R, Poff NL, Rathburn SL, Walters DM, Wilcox AC (2015) The Natural Sediment Regime in Rivers: broadening the Foundation for Ecosystem Management. Bioscience 65(4):358–371. https://doi.org/10.1093/biosci/biv002
  • 69. Wyzga B, Zawiejska J, Radecki-Pawlik A (2015) Impact of channel incision on the hydraulics of flood flows: examples from Polish Carpathian rivers. Geomorphology 272:10–20. https://doi.org/10.1016/j.geomorph.2015.05.017
  • 70. Yalin MS (1992) River mechanics. Pergamon Press, Oxford
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d28d2bb4-cfc6-4a36-88f3-d56fce6dca38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.