Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Compliant mechanisms are the state-of-the-art in precision Compliant Parallelogram Stage (CPS) due to their many beneficial features. However, the translational motion of CPS is accompanied by parasitic displacement and coupling error in these mechanisms. In this paper, the parasitic displacements are analysed by firstly applying the pseudo-rigid-body theory to One-Degree of Freedom (1-DoF) CPS. Then the theoretical model of the Coupling Error Transfer Matrix (CETM) is presented on a Three-Degree of Freedom (3-DoF) serial CPS. Moreover, the general forms of CETM are developed for the various configurations of 3-DoF-compliant mechanisms. In addition, the coupling error model is validated through experiment on a 1-DoF CPS. Meanwhile, the analytical results are validated with Finite Element Analysis (FEA) by comparing the parasitic displacements on each coordination axial direction. Compared with the analysis results between theoretical calculation and the FEA method, the maximum difference of the parasitic displacement is about 0.18 uμ and the relative error of about 6.22%. This result offers effective ways to calculate and compensate for the coupling errors and serves to facilitate further work regarding the precision analysis of compliant mechanisms.
Czasopismo
Rocznik
Tom
Strony
813--829
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., wzory
Twórcy
autor
- Xi’an Technological University, School of Mechatronic Engineering, Xi’an 710021, China
autor
- Xi’an Technological University, School of Mechatronic Engineering, Xi’an 710021, China
autor
- Northwest Institute of Mechanical & Electrical Engineering, Xianyang 712099, China
Bibliografia
- [1] Howell, L. L., Midha, A., & Norton, T. W. (1996). Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms. Journal of Mechanical Design, 118(1), 126-131. https://doi.org/10.1115/1.2826843
- [2] Awtar, S., Slocum, A. H., & Sevincer, E. (2006). Characteristics of Beam-Based Flexure Modules. Journal of Mechanical Design, 129(6), 625-639. https://doi.org/10.1115/1.2717231
- [3] Yin, Z., Huang, Y., Yang, H., Chen, J., Duan, Y., & Chen, W. (2022). Flexible electronics manufacturing technology and equipment. Science China. Technological Sciences, 65(9), 1940-1956. https://doi.org/10.1007/s11431-022-2098-1
- [4] Yuanqiang, L., & Wangyu, L. (2014). Analysis of the displacement of distributed compliant parallel-guiding mechanism considering parasitic rotation and deflection on the guiding plate. Mechanism and Machine Theory, 80, 151-165. https://doi.org/10.1016/j.mechmachtheory.2014.06.005
- [5] Hao, G., He, X., & Awtar, S. (2019). Design and analytical model of a compact flexure mechanism for translational motion. Mechanism and Machine Theory, 142, 103593. https://doi.org/10.1016/j.mechmachtheory.2019.103593
- [6] Li, R.-J., Fan, K.-C., Huang, Q.-X., Zhou, H., Gong, E.-M., & Xiang, M. (2016). A long-stroke 3D contact scanning probe for micro/nano coordinate measuring machine. Precision Engineering, 43, 220-229. https://doi.org/10.1016/j.precisioneng.2015.08.001
- [7] Ling, M., Yuan, L., & Zhang, X. (2024). Geometrically nonlinear analysis of compliant mechanisms using a dynamic beam constraint model (DBCM). Mechanism and Machine Theory, 191, 105489. https://doi.org/10.1016/j.mechmachtheory.2023.105489
- [8] Malaeke, H., & Moeenfard, H. (2017). A novel flexure beam module with low stiffness loss in compliant mechanisms. Precision Engineering, 48, 216-233. https://doi.org/10.1016/j.precisioneng.2016.12.004
- [9] Awtar, S., & Mariappan, D. D. (2017). Experimental measurement of the bearing characteristics of straight-line flexure mechanisms. Precision Engineering, 49, 1-14. https://doi.org/10.1016/j.precisioneng.2016.12.014
- [10] Shi, H., Yang, G., Li, H. N., Zhao, J., Yu, H., & Zhang, C. (2024). A flexure-based and motion-decoupled XYZ nano-positioning stage with a quasi-symmetric structure. Precision Engineering, 89, 239-251. https://doi.org/10.1016/j.precisioneng.2024.06.014
- [11] Zhang, C., Yu, H., Yang, M., Chen, S., & Yang, G. (2022). Nonlinear kinetostatic modeling and analysis of a large range 3-PPR planar compliant parallel mechanism. Precision Engineering, 74, 264-277. https://doi.org/10.1016/j.precisioneng.2021.09.019
- [12] Hao, G., & Yu, J. (2016). Design, modelling and analysis of a completely-decoupled XY compliant parallel manipulator. Mechanism and Machine Theory, 102, 179-195. https://doi.org/10.1016/j.mechmachtheory.2016.04.006
- [13] Ni, Z., Zhang, D., Wu, Y., Tian, Y., & Hu, M. (2010). Analysis of parasitic motion in parallelogram compliant mechanism. Precision Engineering, 34(1), 133-138. https://doi.org/10.1016/j.precisioneng.2009.05.001
- [14] Li, J., Cai, J., Wen, J., Zhang, Y., & Wan, N. (2020). A parasitic type piezoelectric actuator with the asymmetrical trapezoid flexure mechanism. Sensors and Actuators A: Physical, 309, 111907. https://doi.org/10.1016/j.sna.2020.111907
- [15] Wu, H., Lai, L., Zhang, L., & Zhu, L. (2022). A novel compliant XY micro-positioning stage using bridge-type displacement amplifier embedded with Scott-Russell mechanism. Precision Engineering, 73, 284-295. https://doi.org/10.1016/j.precisioneng.2021.09.014
- [16] Wu, K., Zheng, G., & Hao, G. (2021). Efficient spatial compliance analysis of general initially curved beams for mechanism synthesis and optimization. Mechanism and Machine Theory, 162, 104343. https://doi.org/10.1016/j.mechmachtheory.2021.104343
- [17] Cui, L., & Awtar, S. (2019). Experimental validation of complex non-minimum phase zeros in a flexure mechanism. Precision Engineering, 60, 167-177. https://doi.org/10.1016/j.precisioneng.2019.08.002
- [18] Arredondo-Soto, M., Cuan-Urquizo, E., & Gómez-Espinosa, A. (2022). The compliance matrix method for the kinetostatic analysis of flexure-based compliant parallel mechanisms: Conventions and general force-displacement cases. Mechanism and Machine Theory, 168, 104583. https://doi.org/10.1016/j.mechmachtheory.2021.104583
- [19] Meli, F., Kueng, A., & Thalmann, R. (2005). Ultra precision micro-CMM using a low force 3D touch probe. In J. E. Decker & G.-S. Peng (Eds.), SPIE Proceedings (Vol. 5879, p. 58790S). SPIE. https://doi.org/10.1117/12.618692
- [20] Gallardo, A. G., & Pucheta, M. A. (2024). Synthesis of parallel flexure stages with decoupled actuators using sum, intersection, and difference of screw systems. Mechanism and Machine Theory, 192, 105526. https://doi.org/10.1016/j.mechmachtheory.2023.105526
- [21] Ling, M., Howell, L. L., Cao, J., & Chen, G. (2020). Kinetostatic and Dynamic Modeling of Flexure-Based Compliant Mechanisms: A Survey. Applied Mechanics Reviews, 72(3). https://doi.org/10.1115/1.4045679
- [22] Xu, H., Zhang, X., Wang, R., Zhang, H., & Liang, J. (2023). Design of an SMA-driven compliant constant-force gripper based on a modified chained pseudo-rigid-body model. Mechanism and Machine Theory, 187, 105371. https://doi.org/10.1016/j.mechmachtheory.2023.105371
- [23] Mattson, C. A., Howell, L. L., & Magleby, S. P. (2004). Development of Commercially Viable Compliant Mechanisms Using the Pseudo-Rigid-Body Model: Case Studies of Parallel Mechanisms. Journal of Intelligent Material Systems and Structures, 15(3), 195-202. https://doi.org/10.1177/1045389x04033256
- [24] Sorgonà, O., Serafino, S., Giannini, O., & Verotti, M. (2024). Analysis of compliant mechanisms with series and parallel substructures through the ellipse of elasticity theory. International Journal of Solids and Structures, 298, 112847. https://doi.org/10.1016/j.ijsolstr.2024.112847
- [25] Bai, R., Chen, G., & Awtar, S. (2021). Closed-form solution for nonlinear spatial deflections of strip flexures of large aspect ratio considering second order load-stiffening. Mechanism and Machine Theory, 161, 104324. https://doi.org/10.1016/j.mechmachtheory.2021.104324
- [26] Wang, F., Zhao, X., Huo, Z., Shi, B., Liang, C., Tian, Y., & Zhang, D. (2021). A 2-DOF nano-positioning scanner with novel compound decoupling-guiding mechanism. Mechanism and Machine Theory, 155, 104066. https://doi.org/10.1016/j.mechmachtheory.2020.104066
- [27] Li, C., & Chen, S.-C. (2023). Design of compliant mechanisms based on compliant building elements. Part I: Principles. Precision Engineering, 81, 207-220. https://doi.org/10.1016/j.precisioneng.2023.01.006
- [28] Ochoa, O., Betancourt-Tovar, M., Espinosa-Curiel, A. S., Castro-Avilés, A., Granados, N., & Cuan-Urquizo, E. (2024). Novel compliant mechanism-based auxetic metamaterial: Kinematic and experimental analysis. International Journal of Mechanical Sciences, 279, 109478. https://doi.org/10.1016/j.ijmecsci.2024.109478
Uwagi
This work was supported by a research program financed by the National Natural Science Foundation of China under Grant No. 51975448.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d28c58ad-21fc-4eb2-aca9-4ccf614e6a28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.