PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Particle swarm optimization of fuzzy fractional PDμ+I controller of a PMDC motor for reliable operation of wire-feeder units of GMAW welding machine

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wykorzystanie algorytmu optymalizacji rojowej o sterownika fuzzy do sterowania silnikiem prądu stałego z magnesami trwałymi wykorzystywanym w procesie spawania
Języki publikacji
EN
Abstrakty
EN
In this article, we consider the development of an optimal control approach based on fuzzy fractional PDμ+I controller to improve the speed error-tracking and control capability of a permanent magnet DC Motor (PMDC) driven wire-feeder systems (WFSs) of gas metal arc welding (GMAW) process. The proposed controller employs an optimized fractional-order proportional derivative + integral (PDμ+I) controller that serves to eliminate oscillations, overshoots, undershoots and steady state fluctuations of the PMDC motor and makes the wire-feeder unit (WFU) has fast and stable starting process as well as excellent dynamic characteristics. The fixed controller parameters are meta-heuristically selected via a particle swarm optimization (PSO) algorithm. Numerical simulations are performed in MATLAB/SIMULINK environment and the performance of the proposed fuzzy fractional PDμ+I controller is validated. The simulation tests clearly demonstrate the significant improvement rendered by the proposed fuzzy PDμ+I controller in the wire-feeder system's reference tracking performance, torque disturbance rejection capability and robustness against model uncertainties.
PL
Analizowano optymalne sterowanie silnikiem zDC z magnesami trwałymi wykorzystujące sterownik fuzzy PDμ+I. Silnik stosowany jest do sterowania procesem spawania. Układ sterowania wykorzystuje sterownik proporcjonalny ułamkowego rzędu i całkujący zapewniające dobrą dynamikę układu – bez oscylacji.
Rocznik
Strony
40--46
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Research Center in Industrial Technologies (CRTI), P.O.Box64, Cheraga 16014 Algiers, Algeria
Bibliografia
  • [1] Naidu D.S., Ozcelik S., Moore K.L., Modeling sensing and control of gas metal arc welding, Elsevier publications, 2003. https://doi.org/10.1016/B978-0-08-04406 6-8.X5000-9.
  • [2] Kahla S., Boutaghane A., Dehimi S., Hamouda N., Babes B., Amraoui R., Grey wolf optimization of fractional PID controller in gas metal arc welding process, In Proc. 5th International Conference on Control Engineering and Information Technology CEIT-, Sousse, Tunisia, 2017.
  • [3] Greene B.W., Arc current control of a robotic welding system: modeling and control system design, B.S., University of Illinois, September 1988.
  • [4] Jiluan P., Arc welding control, Woodhead Publishing Limited and CRC Press LLC © 2003, Woodhead Publishing Ltd.
  • [5] Chaouch S., hasni M., Boutaghane A., Babes B., Mezaache M., Slimane S., Djenaihi M., DC-motor control using arduinouno board for wire-feed system, Proceedings of the IEEE, 3rd CISTEM’18 - Algiers, Algeria, October 29-31, 2018.
  • [6] Hamouda N., Babes B., Hamouda C., Kahla S., Ellinger T., Petzoldt J., Optimal tuning of fractional order proportionalintegral- derivative controller for wire feeder system using ant colony optimization, Journal Européen des Systèmes Automatisés, vol. 53, no. 2, pp.157-166, 2020. https://doi.org/10.18280/jesa.530201.
  • [7] Hamouda N., Babes B., Boutaghane A., Kahla S. and Mezaache M., Optimal Tuning of PIλDμ Controller for PMDC Motor Speed Control Using Ant Colony optimization Algorithm for Enhancing Robustness of WFSs, 020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), EL OUED, Algeria, 2020, pp. 364-369. doi: 10.1109/CCSSP49278.2020.9151609.
  • [8] Hamouda N., Babes B., Boutaghane A., Design and analysis of robust nonlinear synergetic controller for a PMDC motor driven wire-feeder system (WFS). In Proceedings of the 4th International Conference on Electrical Engineering and Control Applications (ICEECA2019), November 19-21, 2019, Constantine, Algeria.
  • [9] Paul A.K., Experimental design approach to explore suitability of PI and SMC concepts for power electronic product development , Int. J. Power Electronics, vol. 6, no. 1, pp 42-65, 2014.
  • [10] Ngol M.D., Duy V.H, Phuong N.T, Kim H.K, Kim S.B., Development of digital gas metal arc welding system, Journal of Materials Processing Technology, Int. J. Power Electronics, vol. 180, no. 1, pp. 384-391, 2007.
  • [11] Paul A.K., Robust PMDC motor control for accurate wire feeding in GMAW using back EMF, IEEE transactions on industrial electronics, DOI 10.1109/TIE.2019.2896131. January 2019. PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 96 NR 12/2020 46
  • [12] Bingul Z., Karahan O., Comparison of PID and FOPID controllers tuned by PSO and ABC algorithms for unstable and integrating systems with time delay, Optimal Contr. Appl. Methods vol. 39, no. 4, pp. 1431-1450, 2018.
  • [13] Tehrani K.A., Amirahmadi A., Rafiei S.M.R., Griva G., Barrandon L., Hamzaoui M., Rasoanarivo I., Sargos F.M., Design of fractional order PID controller for boost converter based on Multi-Objective optimization, in Proc. 14th IEEE PEMC, T3-179-T3-185, 2010.
  • [14] Verma S.K., Yaday S., Nagar S.K., Fractional order PI controller design for non-monotonic phase systems, IFACPapers OnLine, vol. 49, no. 1, pp. 236-240, 2016.
  • [15] Xu Y., Zhou J., Xue X., Fu W., Zhu W., Li C., An adaptively fast fuzzy fractional order PID control for pumped storage hydro unit using improved gravitational search algorithm, Energ. Conver. and Manag., vol. 111, no. 1, pp. 67–78, 2016.
  • [16] Krzysztof Oprzędkiewicz, Maciej Podsiadło, Klaudia Dziedzic., Integer order vs fractional order temperature models in the forced air heating system, Przegląd Elektrotechniczny 95 (2019), nr.11, 35-40
  • [17] Afghoul H., Chikouche D., Krim F., Babes B., Beddar A., Implementation of fractional-order integral-plus-proportional controller to enhance the power quality of an electrical grid, Electric Power Components and Systems. vol. 00, no. 0, pp.1- 11, 2016. DOI: 10.1080/15325008.2016.1147509.
  • [18] Josip Pavleka., Srete Nikolovski., Marinko S., Finding optimal location of FACTS device for dynamic reactive power compensation using genetic algorithm and particle swarm optimisation (PSO), Przegląd Elektrotechniczny 95 (2019), nr.8, 86-91
  • [19] Yuriy Romasevych., Viatcheslav Loveikin., Sergii Usenko., PIcontroller tuning optimization via PSO-based technique, Przegląd Elektrotechniczny 95 (2019), nr.7, 33-37
  • [20] Teja S.V., Shanavas T.N., Patnaik S.K., Modified PSO based sliding mode controller parameters for buck converter, in Proc. 2012 IEEE, Students Conference on Electrical, Electronics and Computer Science.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2865bb4-ca69-4f69-bec3-35a6662153f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.