Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The flat horizontal polymer loop thermosyphon with flexible transport lines is suggested and tested. The thermosyphon envelope consists of a polyamide composite with carbon based high thermal conductive micro-, nanofilaments and nanoparticles to increase its effective thermal conductivity up to 11 W/(m°C). Rectangular capillary mini grooves inside the evaporator and condenser of thermosyphon are used as a mean of heat transfer enhancement. The tested working fluid is R600. Thermosyphon evaporator and condenser are similar in design, have a long service life. In this paper three different methods (transient, quasi-stationary, and stationary) have been used to determine the thermophysical properties of polymer composites used as an envelope of thermosyphon, which make it possible to design a wide range of new heat transfer equipment. The results obtained contribute to establish the viability of using polymer thermosyphons for ground heat sinks (solar energy storage), gas-liquid heat exchanger applications involving seawater and other corrosive fluids, efficient cooling of superconductive magnets impregnated with epoxy/carbon composites to prevent wire movement, enhance stability, and diminish heat generation.
Czasopismo
Rocznik
Tom
Strony
75--90
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Porous Media Laboratory, Luikov Heat and Mass Transfer Institute of National Academy of Sciences of Belarus, 15 Brovka St., 220072 Minsk, Belarus
autor
- Porous Media Laboratory, Luikov Heat and Mass Transfer Institute of National Academy of Sciences of Belarus, 15 Brovka St., 220072 Minsk, Belarus
autor
- Porous Media Laboratory, Luikov Heat and Mass Transfer Institute of National Academy of Sciences of Belarus, 15 Brovka St., 220072 Minsk, Belarus
autor
- Porous Media Laboratory, Luikov Heat and Mass Transfer Institute of National Academy of Sciences of Belarus, 15 Brovka St., 220072 Minsk, Belarus
autor
- Porous Media Laboratory, Luikov Heat and Mass Transfer Institute of National Academy of Sciences of Belarus, 15 Brovka St., 220072 Minsk, Belarus
Bibliografia
- [1] Vasiliev L. Jr.: Heat exchange device made of polymeric material. U.S. Patent No. US 20 110 067 843.
- [2] Bielinski H., Mikielewicz J.: Application of a two-phase thermosyphon loop with minichannels and a minipump in computer cooling. Arch. Thermodyn. 37(2016), 1, 3–16, DOI: 10.1515/aoter-2016-0001.
- [3] Bielinski H.: Validation of the generalized model of the two-phase thermosyphon loop based on experimental measurements of volumetric flow rate. Arch. Thermodyn. 37(2016), 3, 109–138, DOI: 10.1515/aoter-2016-0023.
- [4] Wu G.-W., Chen S.-L., Shih W.-P.: Lamination and characterization of a polyethylenterephthalate flexible micro heat pipe. Frontiers in Heat Pipes (FHP) 3(2012), 2, 023003, DOI: 10.5098/fhp.v3.2.3003, Available at www.ThermalFluidsCentral.org.
- [5] Mochizuki M., Akbarzadeh A., Nguyen T.: A review of practical applications of heat pipes and innovative application of opportunities for global warming. In: Heat Pipes and Solid Sorption Transformation: Fundamentals and Practical Applications (L.L. Vasiliev and S. Kakaç, Eds.), CRC Press/Taylor & Francis Group, Boca Raton, FL, 2013, 145–212.
- [6] Vasiliev L.L., Vassiliev L.L., Jr.: Heat pipes and thermosyphons for thermal management of solid sorption machines and fuel cells. In: Heat Pipes and Solid Sorption Transformation: Fundamentals and Practical Applications (L.L. Vasiliev and S. Kakaç, Eds.), CRC Press/Taylor & Francis Group, Boca Raton, FL, 2013, 213–258.
- [7] Carlberg B., Ye L.L., Liu J.: Polymer-metal nanofibrous composite for thermal management of microsystems. Mater. Lett. 75(2012), May 15, 229–232.
- [8] Kim K.J., Shahinpoor M.: Ionic polymer-metal composites: II. Manufacturing techniques. Smart Mater. Struct. 12(2003), 1, 65–79.
- [9] Slepicka P., Fidler T., Vasina A., Svorsik V.: Ripple-like structure on PLLA induced by gold deposition and thermal treatment. Mater Lett. 79(2012), July 15, 4–6.
- [10] Bledzki A.K., Gassan J.: Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 24(1999), 2, 221–227.
- [11] Stankovich S., Dikin D. A., Dommett G.H.B., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen SB. T., Ruoff R.S.: Graphene-based composite materials. Nature 442(2006), July 20, 282–286.
- [12] Lipatov Y.S., Nesterov A.E., Ignatova T.D., Nesterov D.A.: Effect of polymer-filler surface interactions on the phase separation in polymer blends. Polymer 43(2002), 3, 875–883.
- [13] Bogdanovich S.P., Grakovich L.P., Vasiliev L.L.: Heat-conductive polymerous material on basis of thermoelastolayers. In: Proc. Int. Conf. Polymeric Composite Materials and Tribology, Polycomtrib-2011, Gomel, 2011, 78–84.
- [14] Oshman C., Shi B., Li C., Yang R., Lee Y.C., Peterson G.P., Bright V.M.: The development of polymer-based flat heat pipes. IEEE/ASME J. Microelectromech. Syst. 20(2011), 2, 410–417, DOI: 10.1109/JMEMS.2011.2107885.
- [15] Luikov A.V.: Theory of Heat Conduction. Vysshaya Shkola, Moscow 1967 (in Russian).
- [16] Luikov A.V., Vasiliev L.L., Tanaeva S.A., Domorod L.S.: Experimental investigation of thermal properties of glass-fiber-resin materials from 10 to 400 K. Lett. Heat Mass Transfer l(1974), 1, 7–12.
- [17] Vasiliev L.L. et al.: A method for combined investigation of the thermophysical characteristics of materials over the temperature range 4.2-400 K. J. Eng. Physics 17(1969), 6, 1567–1569.
- [18] Bol’shakov Yu.V., Vasiliev L.L., Pozvonkov E.M.: Measuring the thermophysical properties of materials in the 20–300 ◦K temperature range. J. Eng. Physics Thermophys. 24(1973), 6, 721–725. DOI:10.1007/BF00831670.
- [19] Vasiliev L.L., Grakovich L.P., Rabetsky M.I., Vasiliev L.L. Jr.: Grooved heat pipes evaporators with porous coating. In: Proc. 16th Int. Heat Pipe Conf., Lyon, May 20–24, 2012, 289–294.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d27c05ac-5f73-4bdc-841f-e97d9901b1a1