PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of two-stage stirred pulp-mixing on coal flotation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stirred pulp-mixing is performed before coal flotation. In this study, a two-stage stirred pulpmixing tank was designed based on the single-stirred process to intensify the mixing effect of pulp and flotation reagents. A tank has a pitched-impeller opening-type turbine. Stirred pulp-mixing and flotation experiments were conducted on a sample of anthracite fine coal (-0.5mm) from the Xuehu Coal Preparation Plant in Henan Province, China. The results of the two-stage stirred pulp-mixing were compared with those of a single-stage stirred pulp-mixing in terms of flotation performance. Compared with the single-stage stirred pulp-mixing, two mixing areas and double-layer impeller were able to strengthen the energy input to the stirred system, thereby improving the mixing efficiency of flotation reagents and coal particles in the pulp. The two-stage stirred pulp-mixing significantly increased the flotation feed rate of the cyclone-static micro-bubble flotation column and concentrate yield, enhanced the combustible matter recovery effect of coarse particles at a suitable flotation feed rate, and ensured the recovery effect of fine particles at high flotation feed rate.
Słowa kluczowe
Rocznik
Strony
299--310
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
autor
  • Chinese National Engineering Research Center of Coal Preparation and Purification, Xuzhou 221116, Jiangsu, China
autor
  • Chinese National Engineering Research Center of Coal Preparation and Purification, Xuzhou 221116, Jiangsu, China
autor
  • School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
Bibliografia
  • 1. CAO Y., GUI X., MA Z., YU X., CHEN X., ZHANG X., 2009. Process mineralogy of copper-nickel sulphide flotation by a cyclonic–static micro–bubble flotation column. Mining Science and Technology, 19, 784–787.
  • 2. CHENG H., CAI C., ZHANG X., ZHANG J., 1998. Flotation microscopic kinetics and mathematical model. Journal of China Coal Society, 23(5), 545–548 (in Chinese).
  • 3. DING K., JANUSZ S, LASKOWSKI, 2006. Coal reverse flotation. Part I, Separation of a mixture of subbituminous coal and gangue minerals. Minerals Engineering, 19 (1), 72–78.
  • 4. DOBBY G S, FINCH J A, 1986. Particle size dependence in flotation derived from a fundamental model of the capture process. International Journal of Mineral Processing, 21(3–4), 241–260.
  • 5. CHEN G., GRANO S., SOBIERAJ S., RALSTON J., 1999. The effect of high intensity conditioning on the flotation of a nickel ore, part1, size-by-size analysis. Minerals Engineering, 12(10), 1185–1200.
  • 6. GUI X., HUANG G., YUAN C., LIANG H., WANG Y., 2013. Mixing characteristics of two-stage compulsory stirred pulp–mixing and its influence on fine coal flotation. Journal of University of Science and Technology Beijing, 35(4), 423–431.
  • 7. HARBORT G. J., JACKSON B. R., MANLAPIG E. V., 1994. Recent advances in jameson flotation cell technology. Minerals Engineering, 7(2), 319–332.
  • 8. JIANG M., YAN R., YU Y., 2006. The popularization and application of the flotation emulsion system in coal preparation plants. Coal Quality Technology, 4, 7–10 (in Chinese).
  • 9. LI Y., ZHAO W., GUI X., ZHANG X., 2013. Flotation Kinetics and Separation Selectivity of Coal Size Fractions. Physicochemical Problems of Mineral Processing, 49(2), 387–395.
  • 10 LI Z., 2010. Study on the stirred pulp–mixing process intensification and multi–stage compulsory mixing mechanism. Xuzhou, China University of Mining and Technology, 49–55 (in Chinese).
  • 11. LI Z., LIU J., CAO Y., 2009. Review of stirred pulp–mixing technology in flotation process. Metal Mine, 10), 5– 11 (in Chinese).
  • 12. LIANG H,. XU N., SHAO Y., 2011. Flotation process optimization and mixing transformation of Xuehu coal preparation plant. Coal Engineering, 6 , 60– 62 (in Chinese).
  • 13. LIU J., HU J., MA L., 2000. Development and application of column flotation separation technology. Coal Processing and Comprehensive Utilization, 1, 1–5 (in Chinese).
  • 14. LIU L., LIU J., SHANG L., XU M., 2009. Stirring on the impact of coal flotation process. Coal Preparation Technology, 1, 22–25 (in Chinese).
  • 15. ENGEL M.D., MIDDLEBROOK P.D., JAMESON G.J., 1997. Advances in the study of high intensity conditioning as a means of improving mineral flotation performance. Minerals Engineering, 10(1), 55–68
  • 16. FENG D., ALDRICH C., 2005. Effect of Preconditioning on the Flotation of Coal. Chem. Eng. Comm. 192, 972–983.
  • 17. CLAYTON R., JAMESON G.J., MANLAPIG E.V., The development and application of the Jameson cell. Minerals Engineering, 1991, 4(1), 925–933.
  • 18. RUBINSTEIN J B. 2004. Design, simulation, and operation of the flotation column. Metallic Ore Dressing Abroad. 7, 16–20.
  • 19. SUN W., HU Y., DAI J., 2006. Observation of fine particle aggregating behavior induced by high intensity conditioning using high speed CCD. Transactions of Nonferrous Metals Society of China (English Edition), 16 (1), 198–202.
  • 20. NEGRI T, ZHANG L., LI C., 2007. The measurement and scaling of flotation pulp mixing intensity. Metallic Ore Dressing Abroad, 4, 22–25.
  • 21. VALDERRAMA L , RUBIO J, 1998. High intensity conditioning and the carrier flotation of gold fine particle. International Journal of Mineral Processing, 52(4), 273–285
  • 22. WANG F., MAO Z., SHEN X., 2004. Numerical study of solid-liquid two-phase flow in stirred tanks with Rushton impeller. (II) Prediction of critical impeller speed. Chinese Journal of Chemical Engineering, 12(5):610-614.
  • 23. WANG K., YU J., 2003. Chemical equipment design – mixing equipment. Beijing, Chemical Industry Press, 57–58 (in Chinese).
  • 24. XIA W., YANG J., ZHU B., 2012a. Flotation of oxidized coal dry–ground with collector. Powder Technology, 228, 324–326.
  • 25. XIA W., YANG J., ZHAO Y., ZHU B., WANG Y., 2012b. Improving floatability of Taixi anthracite coal of mild oxidation by grinding. Physicochemical Problems of Mineral Processing, 48 (2), 393–401.
  • 26. XIA W., YANG J., LIANG C, 2013. A short review of improvement in flotation of low rank/oxidized coals by pretreatments. Powder Technology, 237, 1–8.
  • 27. XU Z., LIU, J., CHOUNG J.W., ZHOU Z., 2003. Electrokinetic study of clay interactions with coal in flotation. International Journal of Mineral Processing, 68 (1–4), 183–196.
  • 28. YU H., 2005. XY–3.5 The application of pulp preprocessor in coal preparation plant. Mining and Processing Equipment, 5, 120–121. ( In Chinese)
  • 29. ZHANG C., WU J., GONG B., 2006. Flow resistance researches for SK static mixer tube of turbulent flow. Chemical Engineering, 34(10), 27–30 (in Chinese).
  • 30. ZHANG H., LIU J., WANG Y., CAO Y., MA Z., LI X., 2013. Cyclonic–static micro-bubble flotation column. Minerals Engineering, 45, 1–3.
  • 31. ZHANG Q., MAO Z., YANG C., ZHAO C., 2008. Research progress of liquid–phase mixing time in stirred tanks. Chemical Industry and Engineering Progress, 27(10), 1544–1550.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d27a4e2e-ea45-41d6-94da-1c887651fb9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.