Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A CO2 boiled off gas (CO2 BOG) reliquefaction system using liquid ammonia cold energy is designed to solve the problems of fuel cold energy waste and the large power consumption of the compressor in the process of CO2 BOG reliquefaction on an ammonia-powered CO2 carrier. Aspen HYSYS is used to simulate the calculation, and it is found that the system has lower power consumption than the existing reliquefaction method. The temperature of the heat exchanger heater-1 heat flow outlet node (node C-4) is optimised, and it is found that, with the increase of the node C-4 temperature, the power consumption of the compressor gradually increases, and the liquefaction fraction of CO2 BOG gradually decreases. Under 85% conditions, when the ambient temperature is 0°C and the temperature of node C-4 is -9°C, the liquid fraction of CO2 BOG reaches the maximum, which is 74.46%, and the power of Compressor-1 is the minimum, which is 40.90 kW. According to this, the optimum temperature of node C-4 under various working conditions is determined. The exergy efficiency model is established, in an 85% ship working condition with the ambient temperature of 40°C, and the exergy efficiency of the system is the maximum, reaching 59.58%. Therefore, the CO2 BOG reliquefaction system proposed in this study could realise effective utilisation of liquid ammonia cold energy.
Czasopismo
Rocznik
Tom
Strony
22--34
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- College of Electromechanical Engineering, Qingdao University of Science and Technology, China
autor
- College of Electromechanical Engineering, Qingdao University of Science and Technology, China
autor
- College of Electromechanical Engineering, Qingdao University of Science and Technology, China
autor
- College of Electromechanical Engineering, Qingdao University of Science and Technology, China
autor
- College of Electromechanical Engineering, Qingdao University of Science and Technology, China
Bibliografia
- 1. M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, and N. MacDowell, “Carbon capture and storage (CCS): the way forward,” Energy & Environmental Science, vol. 11, no. 5, pp. 1062-1176, 2018, doi: 10.1039/C7EE02342A.
- 2. E. S. P. Aradóttir, H. Sigurdardóttir, B. Sigfússon, and E. Gunnlaugsson, “CarbFix: a CCS pilot project imitating and accelerating natural CO2 sequestration,” Greenhouse Gases: Science and Technology, vol. 1, no. 2, pp. 105-118, 2011, doi: 10.1002/ghg.18.
- 3. K. Onarheim, A. Mathisen, and A. Arasto, “Barriers and opportunities for application of CCS in Nordic industry‒A sectorial approach,” International Journal of Greenhouse Gas Control, vol. 36, pp. 93-105, 2015, doi: 10.1016/j.ijggc.2015.02.009.
- 4. P. Mekala, M. Busch, D. Mech, R. S. Patel, and J. S. Sangwai, “Effect of silica sand size on the formation kinetics of CO2 hydrate in porous media in the presence of pure water and seawater relevant for CO2 sequestration,” Journal of Petroleum Science and Engineering, vol. 122, pp. 1-9, 2014, doi: 10.1016/j. petrol.2014.08.017.
- 5. G. Hegerland, T. Jørgensen, and J. O. Pande, “Liquefaction and handling of large amounts of CO2 for EOR,” Proc. Seventh International Conference on Greenhouse Gas Control Technologies, vol. 2, pp. 2541–2544, 2005, doi: 10.1016/ B978-008044704-9/50369-4.
- 6. D. E. Clark, E. H. Oelkers, I. Gunnarsson, B. Sigfússon, S. Ó. Snæbjörnsdóttir, E. S. Aradóttir, and S. R. Gíslason, “CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250°C,” Geochimica et Cosmochimica Acta, vol. 279, pp. 45-66, 2020, doi: 10.1016/j.gca.2020.03.039.
- 7. H. Wu, R. S. Jayne, R. J. Bodnar, and R. M. Pollyea, “Simulation of CO2 mineral trapping and permeability alteration in fractured basalt: Implications for geologic carbon sequestration in mafic reservoirs,” International Journal of Greenhouse Gas Control, vol. 109, p. 103383, 2021, doi: 10.1016/j.ijggc.2021.103383.
- 8. T. M. P. Ratouis, S. Ó. Snæbjörnsdóttir, M. J. Voigt, B. Sigfússon, G. Gunnarsson, E. S. Aradóttir, and V. Hjörleifsdóttir, “Carbfix 2: A transport model of long-term CO2 and H2S injection into basaltic rocks at Hellisheidi, SW-Iceland,” International Journal of Greenhouse Gas Control, vol. 114, p. 103586, 2022, doi: 10.1016/j.ijggc.2022.103586.
- 9. H. A. Baroudi, A. Awoyomi, K. Patchigolla, K. Jonnalagadda, and E. J. Anthony, “A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage,” Applied Energy, vol. 287, p. 116510, 2021, doi: 10.1016/j.apenergy.2021.116510.
- 10. S. Trædal, J. H. J. Stang, I. Snustad, M. V. Johansson, and D. Berstad, “CO2 liquefaction close to the triple point pressure,” Energies, vol. 14, p. 8220, 2021, doi: 10.3390/en14248220.
- 11. S. H. Jeon and M. S. Kim, “Compressor selection methods for multi-stage re-liquefaction system of liquefied CO2 transport ship for CCS,” Applied Thermal Engineering, vol. 82, pp. 360367, 2015, doi: 10.1016/j.applthermaleng.2015.02.080.
- 12. J. R. Gómez, M. R. Gómez, R. F. Garcia, and A. D. Catoira, “On board LNG reliquefaction technology: a comparative study,” Polish Maritime Research, vol. 21, pp. 77-88, 2013, doi: 10.2478/pomr-2014-0011.
- 13. A. Alabdulkarem, Y. H. Wang, and R. Radermacher, “Development of CO2 liquefaction cycles for CO2 sequestration,” Applied Thermal Engineering, vol. 33, pp. 144156, 2012, doi: 10.1016/j.applthermaleng.2011.09.027.
- 14. K. Aliyon, M. Mehrpooya, and A. Hajinezhad, “Comparison of different CO2 liquefaction processes and exergoeconomic evaluation of integrated CO2 liquefaction and absorption refrigeration system,” Energy Conversion and Management, vol. 211, p. 112752, 2020, doi: 10.1016/j. enconman.2020.112752.
- 15. L. E. Øi, N. Eldrup, U. Adhikari, M. H. Bentsen, J. L. Badalge, and S. Yang, “Simulation and cost comparison of CO2 liquefaction,” Energy Procedia, vol. 86, pp. 500-510, 2016, doi: 10.1016/j.egypro.2016.01.051.
- 16. Y. Sen, H. You, S. Lee, C. Huh, and D. Chang, “Evaluation of CO2 liquefaction processes for ship-based carbon capture and storage (CCS) in terms of life cycle cost (LCC) considering availability,” International Journal of Greenhouse Gas Control, vol. 35, pp. 1-12, 2015, doi: 10.1016/j.ijggc.2015.01.006.
- 17. S. Decarre, J. Berthiaud, N. Butin, and J. L. GuillaumeCombecave, “CO2 maritime transportation,” International Journal of Greenhouse Gas Control, vol. 4, no. 5, pp. 857-864, 2010, doi: 10.1016/j.ijggc.2010.05.005.
- 18. L. Duan, X. Chen, and Y. Yang, “Study on a novel process for CO2 compression and liquefaction integrated with the refrigeration process,” International Journal of Energy Research, vol. 37, pp. 1453-1464, 2013, doi: 10.1002/er.2951.
- 19. U. Zahid, J. An, U. Lee, S. P. Choi, and C. Han, “Technoeconomic assessment of CO2 liquefaction for ship transportation,” Greenhouse Gases: Science and Technology, vol. 4, no. 6, pp. 734-749, 2015, doi: 10.1002/ghg.1439.
- 20. A. Awoyomi, K. Patchigolla, and E. J. Anthony, “CO2/ SO2 emission reduction in CO2 shipping infrastructure,” International Journal of Greenhouse Gas Control, vol. 88, pp. 57-70, 2019, doi: 10.1016/j.ijggc.2019.05.011.
- 21. H. J. Sang and S. K. Min, “Effects of impurities on re-liquefaction system of liquefied CO2 transport ship for CCS,” International Journal of Greenhouse Gas Control, vol. 43, no. 2, pp. 225-232, 2015, doi: 10.1016/j.ijggc.2015.10.011.
- 22. H. Deng, S. Roussanaly, and G. Skaugen, “Techno-economic analyses of CO2 liquefaction: Impact of product pressure and impurities,” International Journal of Refrigeration, vol. 103, pp. 301-315, 2019, doi: 10.1016/j.ijrefrig.2019.04.011.
- 23. Y. Lee, K. H. Baek, S. Lee, K. Cha, and C. Han, “Design of boil-off CO2 re-liquefaction processes for a large-scale liquid CO2 transport ship,” International Journal of Greenhouse Gas Control, vol. 67, pp. 93-102, 2017, doi: 10.1016/j. ijggc.2017.10.008.
- 24. H. A. Muhammad, C. Roh, J. Cho, Z. Rehman, H. Sultan, Y. J. Baik, and B. Lee, “A comprehensive thermodynamic performance assessment of CO2 liquefaction and pressurization system using a heat pump for carbon capture and storage (CCS) process,” Energy Conversion and Management, vol. 206, p. 112489, 2020, doi: 10.1016/j.enconman.2020.112489.
- 25. J. Kropiwnicki, “Application of Stirling engine type alpha powered by the recovery energy on vessels,” Polish Maritime Research, vol. 27, no. 1, pp. 96-106, 2020, doi: 10.2478/ pomr-2020-0010.
- 26. H. P. Nguyen, A. T. Hoang, S. Nizetic, X. P. Nguyen, A. T. Le, C. N. Luong, V. D. Chu, and V. V. Pham, “The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review,” International Transactions on Electrical Energy Systems, vol. 31, E12580, 2020, doi: 10.1002/2050-7038.12580.
- 27. L. C. Law, B. Foscoli, E. Mastorakos, and S. Evans, “A comparison of alternative fuels for shipping in terms of lifecycle energy and cost,” Energies, vol. 14, no. 24, p. 8502, 2021, doi: 10.3390/en14248502.
- 28. N. R. Sharma, D. Dimitrios, A. I. Olcer, and N. Nikitakos, “LNG a clean fuel ‒ the underlying potential to improve thermal efficiency,” Journal of Marine Engineering and Technology, vol. 21, pp. 111-124, 2020, doi: 10.1080/20464177.2020.1827491.
- 29. M. Comotti and S. Frigo, “Hydrogen generation system for ammonia-hydrogen fuelled internal combustion engines,” International Journal of Hydrogen Energy, vol. 40, no. 33, pp. 10673-10686, 2015, doi: 10.1016/j.ijhydene.2015.06.080.
- 30. S. Frankl, S. Gleis, S. Karmann, M. Prager and G. Wachtmeister, “Investigation of ammonia and hydrogen as CO2-free fuels for heavy duty engines using a high pressure dual fuel combustion process,” International Journal of Engine Research, vol. 22, no. 10, pp. 3196-3208, 2021, doi: 10.1177/1468087420967873.
- 31. C. Mounaïm-Rousselle, P. Bréquigny, C. Dumand, and S. Houillé, “Operating limits for ammonia fuel spark-ignition engine,” Energies, vol. 14, no. 14, p. 4141, 2021, doi: 10.3390/ en14144141.
- 32. A. Valera-Medina, F. Amer-Hatem, A. K. Azad, I. C. Dedoussi, M. D. Joannon, R. X. Fernandes, P. Glarborg, H. Hashemi, X. He, S. Mashruk, J. McGowan, C. Mounaim-Rouselle, A. Ortiz-Prado, A. Ortiz-Valera, I. Rossetti, B. Shu, M. Yehia, H. Xiao, and M. Costa, “Review on ammonia as a potential fuel: From synthesis to economics,” Energy and Fuels, vol. 35, pp. 6964-7029, 2021, doi: 10.1021/acs.energyfuels.0c03685.
- 33. H. Li and J. Yan, “Evaluating cubic equations of state for calculation of vapor–liquid equilibrium of CO2 and CO2mixtures for CO2 capture and storage processes,” Applied Energy, vol. 86, no. 6, pp. 826-836, 2009, doi: 10.1016/j. apenergy.2008.05.018.
- 34. U. Lee, S. Yang, Y. S. Jeong, Y. Lim, C. S. Lee, and C. Han, “Carbon dioxide liquefaction process for ship transportation,” Industrial and Engineering Chemistry Research, vol. 51, no. 46, pp. 15122-15131, 2012, doi: 10.1021/ie300431z.
- 35. F. Engel and A. Kather, “Improvements on the liquefaction of a pipeline CO2 stream for ship transport,” International Journal of Greenhouse Gas Control, vol. 72, pp. 214-221, 2018, doi: 10.1016/j.ijggc.2018.03.010.
- 36. Y. Shi, J. Shen, D. Qiu, and T. Qin, “Thermal analysis of type C independent tank,” Ships and Ocean Engineering, vol. 36, no. 3, p. 5, 2020, doi: 10.14056/j.cnki.naoe.2020.03.001.
- 37. B. Y. Yoo, “The development and comparison of CO2 BOG re-liquefaction processes for LNG fueled CO2 carriers,” Energy, vol. 127, pp. 186-197, 2017, doi: 10.1016/j.energy.2017.03.073.
- 38. Y. Li, B. Li, F. Deng, Q. Yang, and B. Zhang, “Research on the application of cold energy of largescale LNG-powered container ships to refrigerated containers,” Polish Maritime Research, vol. 28, no. 4, pp. 107-121, 2022, doi: 10.2478/ pomr-2021-0053.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d279f25f-ad5a-4661-90e2-cf1a24c845fa