PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Thermochemical Degradation of Polypropylene: Energy and Exergy Analysis in a Tubular Reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One method to evaluate the energy behavior is energy and exergy analysis. These analyses applied to waste-to-energy conversion technologies provide the information on operating conditions, facilitating energy optimization processes. In this study, an energetic and exergy analysis was used on the thermochemical degradation process of polypropylene in a tubular reactor at 600 °C with a speed of 15 °C min-1. The experimental data used in this work were taken from the study by Parku et al. (2020). According to the results, energy efficiencies of up to 43% and exergy efficiencies of 38% were achieved, and it was also observed, according to what was reported, that the products obtained from pyrolysis contain a high calorific value and can be used as alternative fuels.
Słowa kluczowe
Rocznik
Strony
14--21
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, University of Guanajuato, Carretera Salamanca- Valle de Santiago km 3.5 + 1.8 Community of Palo Blanco, Salamanca, Gto., 36885, Mexico
  • Department of Mechanical Engineering. University of Veracruz, Adolfo Ruiz Cortínez s/n, Costa Verde, Boca del Rio, Ver., 94294, Mexico
  • Department of Mechanical Engineering. University of Veracruz, Adolfo Ruiz Cortínez s/n, Costa Verde, Boca del Rio, Ver., 94294, Mexico
  • Faculty of Economics, Geography, and Statistics, University of Veracruz, Av. Xalapa s/n Obrero Campesina Xalapa-Enriquez, Ver.91020,Mexico
  • Idioms Center, University of Veracruz, Av. Universidad Veracruzana km 7.5, Col. Santa Isabel, Coatzacoalcos, Ver., 96538, Mexico
Bibliografia
  • 1. Ali, M.F., Ahmed, S., Qureshi, M.S. 2011. Catalytic coprocessing of coal and petroleum residues with waste plastics to produce transportation fuels. Fuel Processing Technology, 92(5), 1109–1120. https://doi.org/10.1016/j.fuproc.2011.01.006
  • 2. Barbarias, I., Lopez, G., Artetxe, M., Arregi, A., Bilbao, J., Olazar, M. 2018. Valorization of di ff erent waste plastics by pyrolysis and in-line catalytic steam reforming for hydrogen production. Energy Conversion and Management, 156(June 2017), 575–584. https://doi.org/10.1016/j.enconman.2017.11.048
  • 3. Boateng, A.A., Mullen, C.A., Osgood-Jacobs, L., Carlson, P., Macken, N. 2012. Mass Balance, Energy, and Exergy Analysis of Bio-Oil Production by Fast Pyrolysis. Journal of Energy Resources Technology, 134(4), 1–9. https://doi.org/10.1115/1.4007659
  • 4. Brown, L.J., Collard, F., Görgens, J. 2017. Pyrolysis of fibre residues with plastic contamination from a paper recycling mill : Energy recoveries. Energy Conversion and Management, 133, 110–117. https://doi.org/10.1016/j.enconman.2016.11.065
  • 5. Cardona, S.C., Corma, A. 2000. Tertiary recycling of polypropylene by catalytic cracking in a semibatch stirred reactor. Use of spent equilibrium FCC commercial catalyst. Applied Catalysis B: Environmental, 25(2–3), 151–162. https://doi.org/10.1016/S0926-3373(99)00127-7
  • 6. Cruz, J.N., Ávila, J.J.L., Martínez, K.D., Hernández, I.P., Zavariz, Á.D. 2022. Pyrolytic Liquid Fuel – An Alternative for Producing Electrical Energy in Mexico. Journal of Ecological Engineering, 23(12). http://www.jeeng.net/Pyrolytic-Liquid-Fuel-An-Alternative-for-Producing-Electrical-Energy-in-Mexico,153454,0,2.html
  • 7. Elordi, G., Olazar, M., Lopez, G., Amutio, M., Artetxe, M., Aguado, R., Bilbao, J. 2009. Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 85(1–2), 345–351. https://doi.org/10.1016/j.jaap.2008.10.015
  • 8. Garforth, A.A., Lin, Y.H., Sharratt, P.N., Dwyer, J. 1998. Production of hydrocarbons by catalytic degradation of high density polyethylene in a laboratory fluidised-bed reactor. Applied Catalysis A: General, 169(2), 331–342. https://doi.org/10.1016/S0926-860X(98)00022-2
  • 9. Kim, S.S., Kim, S. 2004. Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor. Chemical Engineering Journal, 98(1–2), 53–60. https://doi.org/10.1016/S1385-8947(03)00184-0
  • 10. Lin, H.T., Huang, M.S., Luo, J.W., Lin, L.H., Lee, C.M., Ou, K.L. 2010. Hydrocarbon fuels produced by catalytic pyrolysis of hospital plastic wastes in a fluidizing cracking process. Fuel Processing Technology, 91(11), 1355–1363. https://doi.org/10.1016/j.fuproc.2010.03.016
  • 11. López, A., de Marco, I., Caballero, B.M., Laresgoiti, M.F., Adrados, A. 2011. Influence of time and temperature on pyrolysis of plastic wastes in a semibatch reactor. Chemical Engineering Journal, 173(1), 62–71. https://doi.org/10.1016/j.cej.2011.07.037
  • 12. Mei, Y., Liu, R., Wu, W., Zhang, L. 2016. Effect of Hot Vapor Filter Temperature on Mass Yield, Energy Balance, and Properties of Products of the Fast Pyrolysis of Pine Sawdust. Energy and Fuels, 30(12), 10458–10469. https://doi.org/10.1021/acs.energyfuels.6b01877
  • 13. Miskolczi, N., Angyal, A., Bartha, L., Valkai, I. 2009. Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Processing Technology, 90(7–8), 1032–1040. https://doi.org/10.1016/j.fuproc.2009.04.019
  • 14. Parku, G.K., Collard, F.X., Görgens, J.F. 2020. Pyrolysis of waste polypropylene plastics for energy recovery: Influence of heating rate and vacuum conditions on composition of fuel product. Fuel Processing Technology, 209(May), 36–38. https://doi.org/10.1016/j.fuproc.2020.106522
  • 15. Rehan, M., Nizami, A.S., Shahzad, K., Ouda, O.K.M., Ismail, I.M.I., Almeelbi, T., Iqbal, T., Demirbas, A. 2016. Pyrolytic liquid fuel: A source of renewable electricity generation in Makkah. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(17), 2598–2603. https://doi.org/10.1080/15567036.2016.1153753
  • 16. Scott, D.S., Czernik, S.R., Piskorz, J., Radlein, D.S.A.G. 1990. Fast Pyrolysis of Plastic Wastes. Energy and Fuels, 4(4), 407–411. https://doi.org/10.1021/ef00022a013
  • 17. Tang, Y., Dong, J., Chi, Y., Zhou, Z., Ni, M. 2016. Energy and Exergy Analyses of Fluidized-Bed Municipal Solid Waste Air Gasification. Energy and Fuels, 30(9), 7629–7637. https://doi.org/10.1021/acs.energyfuels.6b01418
  • 18. Wang, X., Lv, W., Guo, L., Zhai, M., Dong, P., Qi, G. 2016. Energy and exergy analysis of rice husk high-temperature pyrolysis. International Journal of Hydrogen Energy, 41(46), 21121–21130. https://doi.org/10.1016/j.ijhydene.2016.09.155
  • 19. Yoon, W.L., Park, J.S., Jung, H., Lee, H.T., Lee, D.K. 1999. Optimization of pyrolytic coprocessing of waste plastics and waste motor oil into fuel oils using statistical pentagonal experimental de- sign. Fuel, 78(7), 809–813. https://doi.org/10.1016/S0016-2361(98)00207-5
  • 20. Zhang, Yaning, Zhao, Y., Gao, X., Li, B., Huang, J. 2015. Energy and exergy analyses of syngas produced from rice husk gasification in an entrained flow reactor. Journal of Cleaner Production, 95, 273–280. https://doi.org/10.1016/j.jclepro.2015.02.053
  • 21. Zhang, Yutao, Ji, G., Ma, D., Chen, C., Wang, Y., Wang, W., Li, A. 2020. Exergy and energy analysis of pyrolysis of plastic wastes in rotary kiln with heat carrier. Process Safety and Environmental Protection, 142, 203–211. https://doi.org/10.1016/j.psep.2020.06.021
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d27998c4-8696-4d9a-8c10-69f8bb5e130e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.