PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy-based analysis of permanent strain behaviour of cohesive soil under cyclic loading

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the original results of uniaxial cyclic compression test on cohesive soil are presented. The shakedown phenomena in cohesive soil are described. Energy-based method highlights the change of soil material behaviour from plastic shakedown through plastic creep shakedown to incremental collapse. The samples were cyclically loaded under undrained conditions with the constant amplitude of stress in one-way test procedure. In this study the energy-based method was presented as a proper method to categorise response of cohesive soil to cyclic loading in uniaxial conditions. A shakedown criterion factor, SE, was introduced to help understand the shakedown phenomena in cohesive soil. In cohesive soils the absence of a limit between plastic shakedown and plastic creep shakedown was pointed out.
Czasopismo
Rocznik
Strony
331--344
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
autor
  • Water Centre Laboratory, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
  • Water Centre Laboratory, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
autor
  • Department of Geotechnical Engineering, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
  • Department of Geotechnical Engineering, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
Bibliografia
  • 1. Birgisson B, Sangpetngam B, Roque R, Wang J (2007) Numerical implementation of a strain energy-based fracture model for a HMA materials. Int J Road Mat Pavement Des 8(1):7–45. doi:10.1080/14680629.2007.9690065
  • 2. Boulbibane M, Collins IF (2015) Development Of A pavement rutting model using shakedown theory. Int J Pavement Eng Asph Technol 16(1):55–65. doi:10.1515/ijpeat-2015-0003
  • 3. Cai Y, Gu C, Wang J, Juang CH, Xu C, Hu X (2013) One-way cyclic triaxial behavior of saturated clay: comparison between constant and variable confining pressure. J Geotech Geoenviron Eng 139(5):797–809. doi:10.1061/(ASCE)GT.1943-5606.0000760
  • 4. Cai Y, Sun Q, Guo L, Juang CH, Wang J (2015) Permanent deformation characteristics of saturated sand under cyclic loading. Can Geotech J 52(6):1–13. doi:10.1139/cgj-2014-0341
  • 5. Cerni G, Cardone F, Virgili A, Camilli S (2012) Characterisation of permanent deformation behaviour of unbound granular materials under repeated triaxial loading. Constr Build Mater 28(1):79–87. doi:10.1016/j.conbuildmat.2011.07.066
  • 6. Chen C, Indraratna B, McDowell G, Rujikiatkamjorn C (2015) Discrete element modelling of lateral displacement of a granular assembly under cyclic loading. Comput Geotech 69:474–484. doi:10.1016/j.compgeo.2015.06.006
  • 7. Cuéllar P, Mira P, Pastor M, Merodo JAF, Baeßler M, Rücker W (2014) A numerical model for the transient analysis of offshore foundations under cyclic loading. Comput Geotech 59:75–86. doi:10.1016/j.compgeo.2014.02.005
  • 8. Danne S, Hettler A (2015) Experimental strain response-envelopes of granular materials for monotonous and low-cycle loading processes. In: Triantafylidis TH (ed) Holistic simulation of geotechnical installation processes. Springer International Publishing, Berlin-Heidelberg, pp 229–250
  • 9. Daum M (2008) Simplified presentation of the stress-energy method for general commercial use. J Test Eval 36(1):100–102. doi:10.1520/JTE101202
  • 10. Desai CS, Siriwardane HJ (1984) Constitutive laws for engineering materials with emphasis on geologic materials. Prentice-Hall, New Jersey
  • 11. EN 13286-7 (2004) European Committee for Standardization. Unbound and hydraulically bound mixtures – Part 7: cyclic load triaxial test for unbound mixtures
  • 12. Fadaee MJ, Saffari H, Tabatabaei R (2008) Shear effects in shakedown analysis of offshore structures. J Ocean Univ China 7(1):77–83. doi:10.1007/s11802-008-0177-z
  • 13. Feng J, Wu XY, Zhu BL, Yang QX (2015) Analytical solution to one-dimensional consolidation in unsaturated soils under sinusoidal cyclic loading. J Cent South Univy 22:646–653. doi:10.1007/s11771-015-2566-y
  • 14. Goldscheider M. (1978) Shakedown and incremental collapse of structures in dry sand bodies. In: Proceedings of dynamical methods in soil and rock mechanics, plastic and long-term effects in soils, Balkema, Rotterdam, 2
  • 15. Green RA, Mitchell JK, Polito CP (2000) An energy-based excess pore pressure generation model for cohesionless soils. In: Proceedings of the Developments in Theoretical Geomechanics—The John Booker Memorial Symposium, Australia, 1–9
  • 16. Gu C, Wang J, Cai Y, Yang Z, Gao Y (2012) Undrained cyclic triaxial behavior of saturated clays under variable confining pressure. Soil Dyn Earthq Eng 40:118–128. doi:10.1016/j.soildyn.2012.03.011
  • 17. Jain A, Veas JM, Straesser S, Van Paepegem W, Verpoest I, Lomov SV (2015) The master sn curve approach–a hybrid multi-scale fatigue simulation of short fiber reinforced composites. Compos Part A. doi:10.1016/j.compositesa.2015.11.038
  • 18. Kalinowska M, Jastrzębska M (2014) Behaviour of cohesive soil subjected to low-frequency cyclic loading in strain-controlled tests. Studia Getechnica et Mechanica 36(3):21–35. doi:10.2478/sgem-2014-0024
  • 19. Karg C, François S, Haegeman W, Degrande G (2010) Elasto-plastic long–term behavior of granular soils: modelling and experimental validation. Soil Dyn Earthquake Eng 30(8):635–646. doi:10.1016/j.soildyn.2010.02.006
  • 20. Kokkali P, Anastasopoulos I, Abdoun T, Gazetas G (2014) Static and cyclic rocking on sand: centrifuge versus reduced–scale 1 g experiments. Géotechnique 64(11):865–880. doi:10.1680/geot.14.P.064
  • 21. Kokusho, T., and Y. Kaneko (2014), Dissipated & Strain Energies in Undrained Cyclic Loading Tests for Liquefaction Potential Evaluations, In: Proceedings of the tenth National Conference in Earthquake Engineering, Earthquake Engineering Research Institute, Anchorage, 1–10
  • 22. Kokusho T, Ito F, Nagao Y, Green RA (2012) Influence of non/low–plastic fines and associated aging effects on liquefaction resistance. J Geotech Geoenviron Eng ASCE 138(6):747–756. doi:10.1061/(ASCE)GT.1943-5606.0000632
  • 23. König JA, Maier G (1981) Shakedown analysis of elastoplastic structures: a review of recent developments. Nucl Eng Des 66(1):81–95. doi:10.1016/0029-5493(81)90183-7
  • 24. Koseki J, Mikami T, Sato T (2014) Deformation characteristics of granular materials in cyclic one-dimensional loading tests. Transport Infrastruct Geotechnol 1(1):54–67. doi:10.1007/s40515-014-0002-7
  • 25. Li LL, Dan HB, Wang LZ (2011) Undrained behavior of natural marine clay under cyclic loading. Ocean Eng 38(16):1792–1805. doi:10.1016/j.oceaneng.2011.09.004
  • 26. Liang C, Liu T, Xiao J, Zou D, Yang Q (2015) Effect of stress amplitude on the damping of recycled aggregate concrete. Materials 8(8):5298–5312. doi:10.3390/ma8085242
  • 27. Lu Z, Yao HL, Liu J, Hu Z (2014) Experimental evaluation and theoretical analysis of multi–layered road cumulative deformation under dynamic loads. Road Mat Pavement Des 15(1):35–54. doi:10.1080/14680629.2013.852609
  • 28. Nega A, Nikraz H, Al-Qadi IL (2015) Simulation of shakedown behavior for flexible pavement’s unbound granular layer. In: Harvey J, Chou KF (eds.) Airfield and Highway Pavements, pp 801–812. doi: 10.1061/9780784479216.071G
  • 29. Ostadan F, Deng N, Arango I (1996) Energy-based method for liquefaction potential evaluation, phase I Feasibility study U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, Building and Fire Research Laboratory, San Francisco, pp 96–701
  • 30. Panoskaltsis VP, Bahuguna S (1996) Micro and macromechanical aspects of the behavior of concrete materials with special emphasis on energy dissipation and on cyclic creep. J Mech Behav Mat 6(2):119–134. doi:10.1515/JMBM.1996.6.2.119
  • 31. Pasik T, Chalecki M, Koda E (2015) Analysis of embedded retaining wall using the subgrade reaction method. Studia Geotechnica et Mechanica 37(1):59–73. doi:10.1515/sgem-2015-0008
  • 32. PN–CEN ISO/TS 17892-4:2009, Polish committee for standardization. geotechnical investigations—Soil Laboratory Testing—Part 4: Sieve Analysis, Polish Committee for Standardization: Warsaw, Poland, 2009
  • 33. PN–EN 13286:2010/AC, Polish Committee for Standardization. Unbound and hydraulically bound mixtures—Part 2: Testing methods for laboratory reference density and water content—Proctor compaction; Polish Committee for Standardization: Warsaw, Poland, 2010
  • 34. PN–EN ISO 14688-2:2006, Polish Committee for Standardization. Geotechnical Investigations—Soil Classification—Part 2: Classification Rules, Polish Committee for Standardization: Warsaw, Poland, 2006
  • 35. Puppala AJ, Saride S, Chomtid S (2009) Experimental and modeling studies of permament strains of subgrade soils. J Geotech Geoenviron Eng 135(10):1379–1389. doi:10.1061/(ASCE)GT.1943-5606.0000163
  • 36. Sas W, Głuchowski A, Szymański A (2014) Impact of the stabilization of compacted cohesive soil–sandy clay on field criterion improvement. Ann Warsaw Univ Life Sci 46(2):139–151. doi:10.2478/sggw-2014-0012
  • 37. Sas W, Głuchowski A, Radziemska M, Dzięcioł J, Szymański A (2015) Environmental and geotechnical assessment of the steel slags as a material for road structure. Materials 8(8):4857–4875. doi:10.3390/ma8084857
  • 38. Seo J, Kim YC, Hu JW (2015) Pilot Study for investigating the cyclic behavior of slit damper systems with recentering shape memory alloy (SMA) bending bars used for seismic restrainers. Appl Sci 5(5):187–208. doi:10.3390/app5030187
  • 39. Sharp RW, Booker JR (1984) Shakedown of pavements under moving surface loads. J Transport Eng 110:1–14. doi:10.1061/(ASCE)0733-947X(1984)110:1(1)
  • 40. Soares R, Allen D, Little DN Berthelot CA (2014) Multi–scale computational mechanics model for predicting rutting in asphaltic pavement subjected to cyclic mechanical loading. In: Transportation Research Board 93rd Annual Meeting DC, USA. Accessed 12–16 Jan 2014 pp 1–17
  • 41. Soliman H, Shalaby A (2015) Permanent deformation behavior of unbound granular base materials with varying moisture and fines content. Transport Geotech 4:1–12. doi:10.1016/j.trgeo.2015.06.001
  • 42. Sun L, Gu Ch, Wang P (2015) Effects of cyclic confining pressure on the deformation characteristics of natural soft clay. Soil Dyn Earthquake Eng 78:99–109. doi:10.1016/j.soildyn.2015.07.010
  • 43. Tang LS, Chen HK, Sang HT, Zhang SY, Zhang JY (2015) Determination of traffic-load-influenced depths in clayey subsoil based on the shakedown concept. Soil Dyn Earthquake Eng 77:182–191. doi:10.1016/j.soildyn.2015.05.009CrossRefGoogle Scholar
  • 44. Tao M, Mohammad LN, Nazzal MD, Zhang Z, Wu Z (2010) Application of shakedown theory in characterizing traditional and recycled pavement base materials. J Transport Eng 136(3):214–222. doi:10.1061/(ASCE)0733-947X(2010)136:3(214)
  • 45. Tasdemir Y, Das PK, Brigisson B (2010) Determination of mixture fracture performance with the help of fracture mechanics. In: Proceedings of Ninth International Congress on Advances in Civil Engineering, Sept 2010, Turkey, 1–7
  • 46. Werkmeister S (2003) Permanent deformation behavior of unbound granular materials. Ph.D. dissertation. University of Technology, Dresden, Germany
  • 47. Werkmeister S (2006) Shakedown analysis of unbound granular materials using accelerated pavement test results from New Zealand’s CAPTIF facility. Pavement Mech Perf 154:220–228. doi:10.1061/40866(198)28
  • 48. Werkmeister S, Dawson A, Wellner F (2001) Permanent deformation behavior of granular materials and the shakedown concept. Transport Res Record 1757:75–81. doi:10.3141/1757-09
  • 49. Wichtmann T (2005) Explicit accumulation model for non-cohesive soils under cyclic loading. Ph.D. Thesis, Ruhr-University Bochum
  • 50. Zhang Z, Roque R, Birgisson B, Sangpetngam B (2001) Identification and verification of a suitable crack growth law. J Assoc Asphalt Paving Technol 70:206–241
  • 51. Zhou J, Gong XN (2001) Strain degradation of saturated clay under cyclic loading. Can Geotech J 38(1):208–212. doi:10.1139/cgj-38-1-208
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d27130ba-f0f9-41d9-876c-7fd36de2fa2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.