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Abstract

This paper defines a temporal logic for reaction systems
(RSTL). The logic is interpreted over the models for the
context restricted reaction systems that generalize standard
reaction systems by controlling context sequences. Moreover,
a translation from the context restricted reaction systems into
boolean functions is defined in order to be used for a symbolic
model checking for RSTL over these systems. Finally, model
checking for RSTL is proved to be PSPACE-complete.
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Streszczenie

Weryfikacja temporalnych własności systemów reak-
cyjnych

Praca wprowadza logikę temporalną dla systemów reakcyj-
nych (RSTL), która jest interpretowana w modelach dla sys-
temów reakcyjnych z ograniczeniami kontekstów. Systemy
te uogólniają standardowe systemy reakcyjne przez wpro-
wadzenie ograniczeń kontrolujących dopuszczalne konteksty.
Ponadto, przedstawiono translację z systemów reakcyjnych
z ograniczeniami kontekstów do formuł boolowskich, która
umożliwia symboliczną weryfikację modelową dla tych syste-
mów oraz RSTL. Wykazano również, że problem weryfikacji
modelowej dla RSTL jest problemem PSPACE-zupełnym.

Słowa kluczowe: systemy reakcyjne, weryfikacja modelowa,
logika temporalna



1 Introduction

1 Introduction

Model checking [4] is a method that allows for checking whether or not
the system in question satisfies a given formula specifying either a desired
or an undesired property of that system. Typically, the verified properties
are expressed using some modal logic formalism. This method is fully
automatic and to be used in practice it does not require expert knowledge
of verification techniques.

The basic idea behind the original motivation of reaction systems as
models of processes inspired by the functioning of the living cell (see,
e.g., [7] and [6]) is that this functioning is based on the interactions of
individual biochemical reactions. Moreover, these interactions are driven
by two mechanisms: facilitation/acceleration and inhibition/retardation.

This paper introduces a logic for specifying properties of reaction
systems, together with a method for verifying these properties. This is
the first paper providing a verification method for reaction systems.

Because the processes of reaction systems are guided by the context
sequences (which model an interaction with the environment), to enable
the verification we introduce a generalisation of reaction systems which
allows to specify context entities generating all the context sequences
for the processes of the given reaction system. Moreover, we describe an
encoding of the model for reaction systems into boolean formulae that can
be used for the symbolic model checking approach. We also provide some
complexity results for the problem of model checking reaction systems.

The paper is organised as follows. In Section 2 we recall the basic
notions of reaction systems, while in Section 3 we define two generali-
sations of reaction systems. Two basic illustrative examples are given
in Section 4. In Section 5 we define the syntax of the logic for reaction
systems together with a model used to define the semantics of the logic,
based on which, in Section 6 we define a verification method for reaction
systems and prove its complexity. In Section 7 we present the encoding for
the model defined in Section 5 – this encoding can be used for symbolic
model checking of reaction systems. The last section of the paper provides
concluding remarks.
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2 Reaction Systems

Reaction systems (see, e.g., [2], [7], and [6]) are a formal model for
processes instigated by the functioning of living cell. Research topics in
this research area are motivated either by biological issues or by a need to
understand computations/processes underlying the dynamic behaviour
of reaction systems. By now reaction systems became an interesting and
novel model of computation.

In this section we recall some basic notions of reaction systems that
are used in this paper. First of all, we recall the notion of a reaction.

Definition 2.1. A reaction is a triplet b = (R, I, P ) such that R, I, P
are finite nonempty sets with R ∩ I = ∅.

The sets R, I, P are called the reactant set of b, the inhibitor set of b,
and the product set of b, respectively – they are also denoted by Pb, Ib,
and Pb, respectively. If R, I, P ⊆ Z for a finite set Z, then we say that b
is a reaction in Z. We use rac(Z) to denote the set of all reactions in Z.

The above formal notion of a reaction corresponds closely to the basic
intuition behind a biochemical reaction. Such a reaction will take place if
all of its reactants are present and none of its inhibitors is present, and
if it takes place it produces its set of products.

Definition 2.2. Let Z be a finite set, and let T ⊆ Z.

1. We say that b ∈ rac(Z) is enabled by T , denoted enb(T ), if Rb ⊆ T ,
and Ib ∩T = ∅. The result of b on T , denoted by resb(T ), is defined
by: resb(T ) = Pb if enb(T ), and resb(T ) = ∅ otherwise.

2. For B ⊆ rac(Z), the result of B on T , denoted by resB(T ), is
defined by resB(T ) =

⋃
{resb(T ) | b ∈ B}.

The intuition underlying the above definition is that T formalises a state
of a biochemical system under consideration, e.g., the living cell (T con-
sists of all biochemical entities present in the given state). A reaction b is
enabled by T (can take place at T ) if all the reactants of b are present in
T and none of the inhibitors of b is present in T . Then the result of a set
of reactions B is cumulative – it is the union of results of the individual
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2 Reaction Systems

reactions from B. Note that resB(T ) =
⋃
{resb(T ) | b ∈ B and enb(T )}.

We are ready now to define the notion of reaction system.

Definition 2.3. A reaction system, rs for short, is an ordered pair
R = (S,A), where S is a finite set and A ⊆ rac(S).

The set S is the background set of R, each subset of S is called a
state of R, and A is the set of reactions from R.

Example 2.4. Consider the set S = {1, 2, 3, 4} and the following reac-
tions from rac(S):

• a1 = ({1, 4}, {2}, {1, 2}),

• a2 = ({2}, {3}, {1, 3, 4}),

• a3 = ({1, 3}, {2}, {1, 2}), and

• a4 = ({3}, {2}, {1}).

Then, R1 = (S, {a1, a2, a3, a4}) is a rs.

Dynamic processes taking place in reaction systems are formalised
through the notion of an interactive process.

Definition 2.5. Let R = (S,A) be a rs and let n ≥ 1.

1. An (n-step) interactive process of R is a pair π = (γ, δ) of finite
sequences of finite sets such that:

(a) γ = (C0, C1, · · · , Cn) and δ = (D0, D1, · · · , Dn),

(b) C0, C1, · · · , Cn ⊆ S,

(c) D0, D1, · · · , Dn ⊆ S, with D0 = ∅, and

(d) Di = resA(Di−1 ∪ Ci−1) for all i ∈ {1, · · · , n}.

2. The state sequence of π is the sequence τ = (W0,W1, · · · ,Wn) such
that Wi = Ci ∪Di for all i ∈ {0, . . . , n}.
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The sequence γ is the context sequence of π and the sequence δ is the
result sequence of π. The sequence (C1, C2, · · · , Cn) is the proper context
sequence of π, and the set C0 is the initial state of π. If Ci ⊆ Di for all
i ∈ {1, . . . , n}, then we say that π (and τ) are context-independent. Clearly,
the context sequence γ of an interactive process π = (γ, δ) determines
π because the result sequence δ is obtained from γ by reactions of R
(through resA). The proper context sequence of an interactive process
reflects the fact that the behaviour of the living cell is influenced by its
context/environment.

Note that:

1. The non-permanency of entities carries over to processes in the
obvious way: an entity x from a current state Wi is not sustained in
the successor state Wi+1 unless x is produced by a reaction enabled
by Wi (x ∈ Di+1) or x is thrown in by the context (x ∈ Ci+1).

2. There is no restriction on the context sequence: any sequence of
subsets of the background set S can be a context sequence of an
interactive process.

3 Controlling Context Sequences

We will consider now a basic method to control/restrict proper context
sequences, just by restricting the set of entities that can occur in them.
This leads to the following definition.

Definition 3.1. A context restricted reaction system, crrs for short, is
a triple U = (S,A, E) where:

1. S is the (finite) background set,

2. A ⊆ rac(S) is the set of reactions,

3. E ⊆ S is the set of context entities.

Our next step to control/restrict interactive processes of reaction
systems is to allow only some states to be initial states. This yields the
following definition.
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4 Basic Examples

Definition 3.2. Let U = (S,A, E) be a crrs. An initialised context
restricted reaction system, icrrs for short, is a pair I = (U , S0), where
S0 ⊆ 2S is the set of initial states such that S0 6= ∅.

We need to modify now the notion of an interactive process for crrs
and icrrs so that it reflects the role of the corresponding restrictions on
proper context sets and initial states.

Definition 3.3. Let U = (S,A, E) be a crrs and let n ≥ 0 be an integer.
An (n-step) interactive process in U is a pair π = (γ, δ) of finite sequences
of finite sets such that:

1. γ = (C0, C1, · · · , Cn) and δ = (D0, D1, · · · , Dn),

2. C0 ⊆ S, C1, · · · , Cn ⊆ E ,

3. D0, D1, · · · , Dn ⊆ S, D0 = ∅, and

4. Di = resA(Di−1 ∪ Ci−1) for all i ∈ {1, · · · , n}.

For an icrrs I = ((S,A, E), S0) the above definition of an interactive
process is augmented by adding the condition C0 ∈ S0.

Here is a simple example of an initialised crrs.

Example 3.4. Consider the icrrs I1 =
(
(S,A, {4}),

{
{1, 4}

})
, where

(S,A) is the rs R1 from Example 2.4. Let γ = ({1, 4}, ∅, {4}, {4}) and
δ = (∅, {1, 2}, {1, 3, 4}, {1}). Then, π = (γ, δ) is a 3-step interactive
process of R1. It is also an interactive process of I1, because all proper
context sets are subsets of {4} and the initial context set equals {1, 4}.
However π is not an interactive process of the crrs (S,A, {1, 3}), because
the context set {4} is not a subset of {1, 3}.

4 Basic Examples

Example 4.1. We consider here an implementation by a rs of a small
generic regulatory system G discussed in [7] (Section 3).

The regulatory system contains three (abstract) genes x, y, z express-
ing proteins X, Y , Z, respectively, protein U , and protein complex Q
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formed by X and U . The expression of X by x is inhibited by Y and Z,
the expression of Z by z is inhibited by X, and expression of Y by y is
inhibited by the protein complex Q.

The background set S = {x, x̂,X, y, ŷ, Y, z, ẑ, Z,Q,U, h}, where x̂, ŷ,
and ẑ denote RNA polymerase sitting on the promoter of genes x, y, and
z, respectively. Here h is a “dummy entity” to be used as an inhibitor
whenever we do not specify other inhibitors for a reaction (this is a
simplification of a specification of a desired rs which is made for didactic
reasons).

Finally, the set of reactions consists of four subsets (Ax, Ay, Az,
and AQ) defined as follows:

• Ax = {({x}, {h}, {x}), ({x}, {Y, Z}, {x̂}), ({x, x̂}, {h}, {X})},

• Ay = {({y}, {h}, {y}), ({y}, {Q}, {ŷ}), ({y, ŷ}, {h}, {Y })},

• Az = {({z}, {h}, {z}), ({z}, {X}, {ẑ}), ({z, ẑ}, {h}, {Z})}, and

• AQ = {({U,X}, {h}, {Q})}.

The intuition behind the reactions above corresponds closely to the
biological actions taking place in a genetic regulatory system. For exam-
ple:

• ({x}, {h}, {x}) says that if gene x is present and functional in a
current state, then x will be present and functional in the succes-
sor state, unless something “bad” (inhibition) happens – since G
does not specify such inhibitions, this inhibition is expressed by
the dummy inhibitor h (e.g., h can represent a very high level of
radiation).

• ({x}, {Y,Z}, {x̂}) says that if gene x is present and functional
in current state, then RNA polymerase will sit on its promoter
field meaning that x̂ will be present in the successor state (thus x̂
represents RNA polymerase sitting on the promoter field of gene x).
This will happen providing that neither protein Y nor protein Z is
present in the current state.
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4 Basic Examples

• ({x, x̂}, {h}, {X}) says that if gene x is present and functional in
the current state and RNA polymerase sits on its promoter field,
then eventually protein X will be expressed. This can be inhibited
by a whole set of reasons which are not relevant for our story here,
and so (again) we set here the dummy inhibitor h.

• ({U,X}, {h}, {Q}) says that if both proteins X and U are present
in the current state, then protein complex Q will be present in the
successor state, unless inhibited by something (not specified in G)
formalised by the dummy h.

Now, let us assume that we want to look into the processes starting
from the states that already contain x and y. Then, the icrrs for this
model could be defined as

Ige =
(
(S,A, {U}),

{
{x, y}

})
,

where: A = Ax ∪Ay ∪Az ∪AQ.

Example 4.2. Now we use an implementation by a rs of an n-bit cyclic
binary counter given in [2] (Section 4.1) to provide an icrrs implementing
such a counter. A current value of the counter can be increased by one or
decreased by one depending on the controller’s request. If no such request
is present in a current state, then the value of the counter remains the
same.
The background set of the rs implementing this counter is Sn = {p0, . . . ,
pn−1, inc, dec}.

The entities {p0, . . . , pn−1} allow to provide a set representation of
numbers from the range {0, . . . , 2n−1} represented in the positional binary
notation: entity pi represents the enabled bit corresponding to the value of
2i, for i ∈ {0, . . . , n−1}. For example, with n = 5, the value 01011 (i.e., 11
in base 10) is represented by the set {p0, p1, p3}. Thus, for each W ⊆ Sn,
the value represented by W equals

∑
pi∈W ′

2i, where W ′ = W \ {inc, dec}.

The entities inc and dec are used to represent the instructions to
increase by one (successor), and to decrease by one (predecessor) the
value of the current state of the counter. If one attempts to increase
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and decrease the counter value at the same time, then the value of the
counter is reset to zero.

Then we need the following reactions:

• Retention:

– For all j ∈ {0, . . . , n− 1}: aj = ({pj}, {dec, inc}, {pj}).

• Increment:

– b0 = ({inc}, {dec, p0}, {p0}),
– For all j ∈ {1, . . . , n− 1}:

bj = ({inc, p0, . . . , pj−1}, {dec, pj}, {pj}),

– For all j, k ∈ {0, . . . , n− 1}, j < k:

cj,k = ({inc, pk}, {dec, pj}, {pk}).

• Decrement:

– For all j ∈ {0, . . . , n− 1}:

dj = ({dec}, {inc, p0, . . . , pj}, {pj}),

– For all j, k ∈ {0, . . . , n− 1}, j < k:

ej,k = ({dec, pj , pk}, {inc}, {pk}).

Let then:

Bn = {aj : 0 ≤ j ≤ n} ∪ {bj : 0 ≤ j ≤ n} ∪ {dj : 0 ≤ j ≤ n}
∪ {cj,k : 0 ≤ j < k < n} ∪ {ej,k : 0 ≤ j < k < n}.

Finally the desired icrrs is defined as Inbc = ((Sn, Bn, E), {∅}), where
E = {inc, dec}. Thus, with this implementation of an n-bit cyclic binary
counter by an icrrs, the only allowed initial state (for interactive processes
in Inbc) is the empty set – it represents the state of the corresponding
counter where all bits are set to 0 and no controller request (inc or dec)
is present.
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5 Logic for Reaction Systems

5 Logic for Reaction Systems

Our aim is to describe properties of reaction systems by using a branching
time logic and, later on, to verify these properties by means of a model
checking technique. In this section we introduce the syntax and semantics
of a logic for reaction systems.

5.1 Syntax and Semantics

Let I = ((S,A, E), S0) be an icrrs, and PV be a nonempty set of propo-
sitional variables. The language of Reaction Systems Temporal Logic
(RSTL, for short) is defined by the following grammar:

φ := ℘ | ¬φ | φ ∨ φ | EΨXφ | EΨGφ | EΨ[φUφ],

where ℘ ∈ PV and ∅ 6= Ψ ⊆ 2E .
The operators of RSTL are composed of the path quantifier EΨ and

temporal operators (X,G,U). The path quantifier EΨ means ‘there exists
a path over Ψ’: the argument Ψ restricts the set of the considered paths
by describing the set of actions allowed along the paths. The temporal
operators are used to express requirements imposed on the paths selected
by the path quantifiers. The Xφ operator means ‘in the next state φ
holds’, Gφ means ‘in each state of the path (globally) φ holds’. The φUψ
operator uses two properties and means ‘ψ holds eventually, and φ must
hold at every preceding state’.

Our logic resembles action-restricted CTL of [10], but we use families
of sets of entities instead of actions to restrict the path quantifier.

Next, we define the models for RSTL that are used for interpreting
the RSTL formulae.

Definition 5.1. Let I = ((S,A, E), S0) be an icrrs. Then, the model for
I over PV = S is defined as M(I) = (W,W0,−→, L) where:

1. W = 2S is the set of the states,

2. W0 = {resA(α) | α ∈ S0} ⊆W is the set of the initial states,

3. −→ ⊆W×2E×W is the transition relation such that for all w,w′ ∈
W, α ∈ 2E : (w,α,w′) ∈ −→ iff w′ = resA(w ∪ α),
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4. L : W → 2PV is a valuation function such that L(w) = w for
all w ∈W.

For the sequel of this paper we fix I = ((S,A, E), S0) and its model
MI = (W,W0,−→, L). Each element (w,α,w′) ∈ −→ is denoted by
w

α−→ w′.
The following lemma follows immediately from Definition 5.1. It states

that the transition relation is serial, i.e., every state of the model has a
successor.

Lemma 5.2. For each w ∈ W there exists α ∈ 2E and w′ ∈ W such
that w α−→ w′.

The formulae of RSTL are interpreted in each state, but they express
properties of the paths initialised in a given state. In CTL [5], the paths
are defined as sequences of states. However, the paths in RSTL contain
additional elements which represent context sets. Thus, the paths for
RSTL are defined as sequences of states, interleaved with actions, that
is, subsets of the set E .

Definition 5.3. A path over Ψ ⊆ 2E is an infinite sequence σ = (w0, α0,

w1, α1, . . . ) of states and actions such that: wi
αi−→ wi+1 and αi ∈ Ψ

for i ≥ 0.

For each i ≥ 0, the i-th state of the path σ is denoted by σs(i),
and the i-th action of the path σ is denoted by σa(i). By ΠΨ(w) we
denote the set of all the paths over Ψ that start in w ∈ W, that is,
ΠΨ(w) = {σ | σs(0) = w}.

Let w,w′ ∈ W and Ψ ⊆ E . We say that w′ is a Ψ-successor of w
(denoted by w −→Ψ w′) iff there exists α ∈ Ψ such that w α−→ w′.

Next, we introduce the notion of a reachable state and, later on, we
present an example of the reachable part of a model.

Definition 5.4. Let I = ((S,A, E), S0) be an icrrs and let MI =
(W,W0,−→, L) be the model for I. We say that a state w ∈W is reachable
over Ψ ⊆ 2E in MI if there exists w ∈W0 and a path σ ∈ ΠΨ(w) such
that σs(i) = w for some i ≥ 0.
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5 Logic for Reaction Systems

Example 5.5. Consider the icrrs I1 from Example 3.4. Then, the reach-
able part of the modelMI1 is shown in Figure 1. The states of the model
are depicted as the ellipsis.

{1, 2}start {1, 3, 4}

∅

∅
{4}

∅

{4}
∅ {4}

Figure 1: The reachable part of the model for the icrrs I1 from Example 3.4

Now we are ready to define the semantics of RSTL.

Definition 5.6. Let MI = (W,W0,−→, L) be a model and w ∈W be
a state of MI . The fact that φ holds in the state w of the model MI is
denoted by MI , w |= φ, where the relation |= is defined recursively as
follows:

MI , w |= ℘ iff ℘ ∈ L(w) for ℘ ∈ PV,
MI , w |= ¬φ iff MI , w 6|= φ,
MI , w |= φ ∨ ψ iff MI , w |= φ or MI , w |= ψ,
MI , w |= EΨXφ iff (∃σ ∈ ΠΨ(w)) MI , σs(1) |= φ,
MI , w |= EΨGφ iff (∃σ ∈ ΠΨ(w))(∀i ≥ 0)(MI , σs(i) |= φ

)
,

MI , w |= EΨ[φUψ] iff (∃σ ∈ ΠΨ(w))(∃i ≥ 0)
(
MI , σs(i) |= ψ

and (∀0 ≤ j < i) MI , σs(j) |= φ
)
.

We define now derived operators which also introduce the universal
path quantifier AΨ meaning ‘for all the paths over Ψ’:

• true def= ℘ ∨ ¬℘ for any ℘ ∈ PV,

• φ ∧ ψ def
= ¬(¬φ ∨ ¬ψ),

• φ⇒ ψ
def
= ¬φ ∨ ψ,

Prace IPI PAN • ICS PAS Reports 13



• EΨFφ
def
= EΨ[trueUφ],

• AΨFφ
def
= ¬EΨG¬φ,

• AΨXφ
def
= ¬EΨX¬φ,

• AΨGφ
def
= ¬EΨ[trueU¬φ],

Moreover, we assume Ψ = 2E when the set Ψ is unspecified for any of

the RSTL operators, e.g., EFφ
def
= E2EFφ.

We assume that a formula φ is valid in the model MI iff MI , w |= φ
for all w ∈W0, that is, the formula φ holds in all the initial states. This
fact is denoted by MI |= φ.

5.2 Examples of Properties Expressible in RSTL

The following lemma states that there exists a context-independent
sequence, if and only if, there exists a sequence with all the proper
context sets being empty.

Lemma 5.7. Let I = ((S,A, E), S0) be an icrrs and MI be the model
for I. Then, there exists a path σ such that σa(i) ⊆ σs(i) for each i ≥ 0,
if and only if, there exists a path σ′ such that σ′s(i) = σs(i) and σ′a(i) = ∅
for each i ≥ 0.

Proof. First, we assume that there exists a path σ such that σa(i) ⊆ σs(i)
for each i ≥ 0. We assume σ′s(i) = σs(i) for each i ≥ 0. We need to

show that σ′s(i)
∅−→ σ′s(i + 1) for each i ≥ 0. From the definition of

the transition relation and the fact that σa(i) ⊆ σs(i), it follows that
resA(σs(i) ∪ σa(i)) = resA(σs(i) ∪ ∅) = resA(σs(i)). From this and the
definition of the transition relation, the states of the path σ′ may be

defined as: σ′s(i + 1) = resA(σ′(i)), therefore σ′s(i)
∅−→ σ′s(i + 1), i.e.,

σ′a(i) = ∅ for each i ≥ 0. The converse follows immediately.

This allows to choose only from the paths with all the proper context
sets being empty in order to verify properties over context-independent
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5 Logic for Reaction Systems

sequences. This follows from the fact that in σ and σ′ we preserve the
order of the states, and the RSTL formulae are interpreted in the states.

The following examples demonstrate how RSTL can be used for
expressing properties of icrrs.

Example 5.8. For the icrrs Ige defined in Example 4.1 we can describe
the following properties interpreted according to their validity in the
model MIge , i.e., they must hold in the initial states of the model:

1. It is possible that the protein Q will be finally produced:

EFQ.

2. If Q is present, then the polymerase will not land on the gene y
(that is, ŷ will not be present in any of the immediate successors):

AG(Q⇒ (AX¬ŷ)).

3. Always, if the gene x is present, the polymerase lands on x (that
is, x̂ is present), and the protein U is supplied in the context, then
always when we supply U the protein Q is produced:

A{{U}}G((x ∧ x̂)⇒ A{{U}}FQ).

4. It is possible that the protein Q will never be produced:

EG(¬Q).

5. If we do not supply U in the context, then Q will never be produced:

AΨG(¬Q), where Ψ = {α ⊆ E | U 6∈ α} = {∅}.

6. There exists a context-independent sequence (see Lemma 5.7) over
which the state where X and Y are present is reachable:

E{∅}F(X ∧ Y ).
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Example 5.9. For the icrrs Ibc from Example 4.2 we can describe the
following properties interpreted according to their validity in MIge :

1. Always, if the counter is at its minimal value, then it is possible to
reach the maximal value by supplying as context sets only inc or
dec entities:

AG((¬b0 ∧ · · · ∧ ¬bn)⇒ E{{inc},{dec}}F(b0 ∧ · · · ∧ bn)).

2. Always, if the counter reaches its maximal value, then always in
the next step the counter will make a transition to the minimal
value when we supply only inc entity:

AG((b0 ∧ · · · ∧ bn)⇒ A{{inc}}X(¬b0 ∧ · · · ∧ ¬bn)).

6 Verification of RSTL properties of crrs

In this section we describe a model checking method for verification of
the RSTL properties. The method described here leads to a symbolic
model checking problem which we define in Section 7.

To be able to verify RSTL properties of a given icrrs I, we need
the set of the reachable states of the model MI . Firstly, we describe an
algorithm for computing all the reachable states and, later on, we provide
a method for computing the set of states, where a given RSTL formula
holds.

For the purpose of computing the set of all the reachable states we
need the notion of a fixed point (we use |W | to denote the cardinality of
a set W ).

Let W be a finite set and τ : 2W −→ 2W be a monotone function,
i.e., X ⊆ Y implies τ(X) ⊆ τ(Y ) for all X,Y ⊆W . Let τ i(X) be defined
by τ0(X) = X and τ i+1(X) = τ(τ i(X)). We say that X ′ ⊆W is a fixed
point of τ if τ(X ′) = X ′. It can be proved that if τ is monotone and W
is a finite set, then there exist m,n ≤ |W | such that τm(∅) is the least
fixed point of τ (denoted by µX.τ(X)) and τn(W ) is the greatest fixed
point of τ (denoted by νX.τ(X)).
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6 Verification of RSTL properties of crrs

LetMI = (W,W0,−→, L) be a model. From Definition 5.1 it follows
that any w ∈W may have many different successors (at most 2|E|). Thus
we define the function that assigns the set of the Ψ-successors to the
states in W ⊆W:

postΨ(W ) = {w′ ∈W | (∃w ∈W ) w −→Ψ w′)},

where Ψ ⊆ 2E .
The set of all the reachable states over 2E in MI is denoted by

Reach(MI). The set Reach(MI) can be characterised by the following
fixed point equation:

Reach(MI) = µX.
(
W0 ∪X ∪ post2E (X)

)
.

Algorithm 1 The algorithm for computing the set Reach(MI)
1: X := W0

2: Xp := ∅
3: while X 6= Xp do
4: Xp := X
5: X := X ∪ post2E (X)
6: end while
7: return X

Algorithm 1 implements the fixed-point computation of the reachable
states for a given model MI = (W,W0,−→, L). Line 7 of the algorithm
returns the set X which is equal to Reach(MI).

The set of all the reachable states of the model MI at which φ
holds is denoted by JMI , φK or by JφK if MI is implicitly understood.
For W ⊆ Reach(MI) we define a function that assigns the set of the
Ψ-predecessors to W :

pre∃Ψ(W ) = {w ∈ Reach(MI) | (∃w′ ∈W ) w −→Ψ w′)}.

Let φ, ψ be some RSTL formulae. We define then the following sets:

• J¬φK def= Reach(MI) \ JφK,
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• Jφ ∧ ψK def= JφK ∩ JψK, Jφ ∨ ψK def= JφK ∪ JψK,

• JEΨXφK def= pre∃Ψ(JφK).

The remaining operators are defined as the following fixed points:

• JEΨGφK def= νX.
(
JφK ∩ pre∃Ψ(X)

)
,

• JEΨ[φUψ]K def= µX.
(
JψK ∪ (JφK ∩ pre∃Ψ(X))

)
.

In the case of JEΨGφK the greatest fixed point computation is involved,
which in each iteration removes states that do not have a Ψ-predecessor
in which φ is satisfied. In the case of JEΨ[φUψ]K the least fixed point
computation is involved, such that in each iteration the Ψ-predecessors,
in which φ is satisfied are added to the set of states in which ψ is satisfied.
See Algorithm 2 and 3 for the pseudocode of the procedures implementing
the described fixed point computations.

Algorithm 2 The algorithm for computing the set JEΨGφK
1: X := Reach(MI), Xp := ∅
2: while X 6= Xp do
3: Xp := X
4: X :=

(
JφK ∩ pre∃Ψ(X)

)
5: end while
6: return X

Algorithm 3 The algorithm for computing the set JEΨ[φUψ]K
1: X := ∅, Xp := Reach(MI)
2: while X 6= Xp do
3: Xp := X
4: X := JψK ∪ (JφK ∩ pre∃Ψ(X))
5: end while
6: return X

Lemma 6.1. Given an icrrs I = ((S,A, E), S0) and an RSTL formula φ,
the problem of deciding whether MI |= φ is PSPACE-hard.
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6 Verification of RSTL properties of crrs

Proof. The proof is by reduction of QSAT1, which is a known PSPACE-
complete problem [11], to the RSTL model checking problem. The con-
struction used for the reduction is similar to the one of [8] for timed
automata and TCTL. Let PV = {x1, x2, . . . , xn} be a set of proposi-
tional variables, β(x1, x2, . . . , xn) be a boolean formula in 3-CNF , and
γ = Q1x1Q2x2 . . .Qnxnβ(x1, x2, . . . , xn) be a quantified boolean formula,
where Qi = ∃ if i is odd, Qi = ∀ if i is even. Then, the QSAT problem
consists in deciding if the formula γ is true.

We define an additional set of the negated propositional variables
PV = {x̄ | x ∈ PV } and assume that β is represented as the conjunction
of m clauses: β = c1 ∧ c2 ∧ · · · ∧ cm, where ci = (li,1 ∨ li,2 ∨ li,3) with
li,j ∈ (PV ∪PV ) for all 0 < i ≤ m, 1 ≤ j ≤ 3. Moreover, for each clause c
we define the set vars(c) = {0 < k ≤ n | xk ∈ PV is in c} and the set
vars(c) = {0 < k ≤ n | x̄k ∈ PV is in c}. Next, we define the icrrs which
we use for the translation. Let V = {p1, p̄1, . . . , pn, p̄n} be a set of the
entities that represent the propositional variables and their negations,
and C = {ĉ1, ĉ2, . . . , ĉm} be the set of the entities that correspond to
the clauses. The entity t is used to indicate that under the considered
valuation the formula γ is true. The entity h is used as the inhibitor
of the reactions where no inhibitors are needed for the translation to
work. This guarantees that the inhibitor set is non-empty. Then, the
background set is defined as S = V ∪ C ∪ {t, h}. Next, we define the
following sets of reactions:

• Pi = {({pi}, {h}, {pi}), ({p̄i}, {h}, {p̄i})} for 0 < i ≤ n,

• Li = {({pk}, {p̄k}, {ĉi}) | k ∈ vars(i)} ∪ {({p̄k}, {pk}, {ĉi}) | k ∈
vars(i)} for 0 < i ≤ n,

• F = {({ĉ1, ĉ2, . . . , ĉn}, {h}, {t})}.

The set Pi contains the reactions responsible for preserving the valuations
of the variables along the execution sequences. The reactions of Li produce
entities that indicate whether a single clause is satisfied, whereas the

1Quantified SAT (QSAT) is a problem which consists in checking whether a
quantified boolean formula is in the language of TQBF (true quantified boolean
formulae)

Prace IPI PAN • ICS PAS Reports 19



reaction of F produces the entity indicating that all the clauses are

satisfied. The set of all the reactions of the icrrs is defined as A =
n⋃
i=1

Pi∪
n⋃
i=1

Li ∪ F . As the context entities E we use the entities corresponding to

the propositional variables, i.e., E = {p1, p̄1, . . . , pn, p̄n}. We assume that
the set of the initial states contains only the empty set, i.e., S0 = {∅}.
Then, the icrrs for the described QSAT problem and the formula γ
is defined as IQSAT = ((S,A, E), S0). We define the following RSTL
formulae for all 1 ≤ i ≤ n:

φi =

A{
{pi},{p̄i}

}Xφi+1 if Qi = ∀,

E{
{pi},{p̄i}

}Xφi+1 if Qi = ∃.

φn+1 = E{∅}Xt

The formula φ1 consists of n nested next-state operators that restrict
the choice of entities either to pi or p̄i (no contradictions are allowed)
at each level 0 < i ≤ n. For the level n+ 1 in the formula, we check if
there exists a successor state in which the entity t exists, indicating that
γ is true. The assumed set E allows us to generate all the valuations that
need to be considered. Then, we restrict these valuations using the RSTL
formula according to the QSAT quantification.

Then, it is easy to see that γ is true if and only ifMIQSAT
|= φ1.

Lemma 6.2. Given an icrrs I = ((S,A, E), S0) and an RSTL formula φ,
the problem of deciding whether MI |= φ is in PSPACE.

Proof. To prove that the problem is in PSPACE we show that there exists
a nondeterministic algorithm for deciding whetherMI |= φ that requires
at most polynomial space in the size of the input, i.e., the formula φ and
the icrrs I. The proof is similar to the one of [1] for TCTL interpreted
over timed graphs.

The algorithm uses the recursive procedure label(w, φ) which returns
true iff MI , w |= φ, where w ⊆ S; otherwise, it returns false. The en-
coding of each state requires space O(|S|) and each successor can be
generated in space O(|S|), whereas the overall algorithm requires space
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6 Verification of RSTL properties of crrs

O
(
|S| ·d(φ)

)
, where d(φ) is the maximal nesting depth of φ and is defined

recursively as follows:

• if φ = ℘, where ℘ ∈ PV, then d(φ) = 0,

• if φ ∈ {¬φ′,EΨXφ
′,EΨGφ

′}, then d(φ) = d(φ′) + 1,

• if φ ∈ {φ′ ∨ φ′′,EΨ[φ′Uφ′′]}, then d(φ) = max{d(φ′), d(φ′′)}+ 1.

The proof follows by the induction on the length of the formula φ.
The cases where φ does not contain temporal operators or φ = EΨXφ1

are straightforward.
The nondeterministic procedure for checking φ = EΨ[φ1Uφ2] in

w ⊆ S is outlined in Algorithm 4. It nondeterministically chooses states
and actions of a path over Ψ, checks at each step if the state chosen is a
successor of the previous state via the action chosen, and if φ1 holds in
that state. If not, then an action and a state are selected again. At each
step of the procedure, only two states are stored: the current state and
its successor. If in the current state φ2 holds, then the algorithm returns
true.

The procedure for checking φ = EΨGφ1 in w ⊆ S is outlined in
Algorithm 5. Similarily to the previous case, the algorithm guesses a
path over Ψ, and nondeterministically chooses a state of that path, for
the purpose of detecting a loop. At each step only three states are stored:
the current state, its successor, and a state for detecting a loop. The
procedure ensures that φ1 holds in the current state and generates its
successor. If the state used for detecting a loop has appeared again in
the sequence, then the search stops, and the algorithm returns true.

The procedure returns false if no sequence for which the procedure
returns true could be found. To ensure that the procedure terminates,
for each sequence guessed the procedure nondeterministically chooses
a state ŵr of that sequence. The guessing of the sequence stops when the
newly guessed state is ŵr. For simplicity of the presentation, this part of
the procedure is not included in Algorithm 4 and Algorithm 5.

To check if MI |= φ, the procedure label is executed for all the
initial states to check if φ holds for all w ∈ S0. For each execution,
the procedure is called recursively for each subformula of φ. At a given
recursion level the procedure requires only a constant number of variables
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Algorithm 4 Procedure for checking EΨ[φ1Uφ2] in w ⊆ S
1: ŵ := w
2: checking :
3: if label(ŵ, φ2) then
4: return true
5: end if
6: if ¬label(ŵ, φ1) then
7: return false
8: end if
9: guessing :

10: guess ŵ′ ⊆ S
11: guess α ∈ Ψ
12: if ŵ′ 6= resA(ŵ ∪ α) ∨ ¬label(ŵ′, φ1) then
13: goto guessing
14: else
15: ŵ := ŵ′

16: goto checking
17: end if

to be stored. The total space requirement depends on O(d(φ)) calls of
the label procedure, where a single call needs space O(|S|). For each call
of the label procedure, i.e., for each nesting level of φ, the label procedure
is called recursively at most twice, as each operator of RSTL has at most
two arguments. Thus, the overall space requirement of the procedure is
O
(
|S|·d(φ)

)
. Therefore, by Savitch’s theorem, the deterministic algorithm

can be implemented in polynomial space.

The following theorem follows directly from Lemma 6.1 and Lemma 6.2:

Theorem 6.3. The model checking problem for RSTL is PSPACE-
complete.

This RSTL verification method can be performed symbolically using
binary decision diagrams (BDDs) [3]. The operations on sets of states,
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7 Encoding icrrs into boolean functions

Algorithm 5 Procedure for checking EΨGφ1 in w ⊆ S
1: ŵ := w
2: L := false
3: if ¬label(ŵ, φ1) then
4: return false
5: end if
6: guessing :
7: guess ŵ′ ⊆ S
8: guess α ∈ Ψ
9: if ŵ′ 6= resA(ŵ ∪ α) ∨ ¬label(ŵ′, φ1) then

10: goto guessing
11: end if
12: if ¬L then
13: guess γ ∈ {true, false}
14: if γ then
15: ŵl := ŵ′

16: L := true
17: end if
18: else
19: if ŵ′ = ŵl then
20: return true
21: end if
22: end if
23: ŵ := ŵ′

24: goto guessing

such as union, intersection, and difference, can be carried out efficiently
on BDDs representing boolean functions.

7 Encoding icrrs into boolean functions

In this section we provide an encoding of the context restricted reaction
systems into boolean functions in order to be used for symbolic model
checking. We start with defining the symbolic model checking problem
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for RSTL.
Let I be an icrrs and φ be an RSTL formula. The symbolic model

checking problem for RSTL consists in deciding whether MI |= φ, using
boolean formulae for representing the model MI .

The general idea of the encoding into boolean functions is similar to
the one introduced for reaction systems in [6], but it differs in how the
encoding of the transitions between states is defined.

Let I = ((S,A, E), S0) be an icrrs and MI = (W,W0,−→, L) be
its model defined over S. We denote the elements of S by e1, . . . , en,
where n = |S|. We introduce sets of the propositional variables used
in the encoding. The states of the model are encoded using the set
P = {p1, . . . , pn}. The actions representing context entities are encoded
with the variables PE = {pE1 , . . . , pEn}. To encode the successors in the
transition relation, we use the set P′ = {p′1, · · · , p′n} of the primed
variables. The set of reactions producing e ∈ S is defined as Prod(e) =
{a ∈ A | e ∈ Pa}. For brevity, we use the following vectors of variables:
p = (p1, . . . , pn), pE = (p1, . . . , pn), p′ = (p′1, . . . , p

′
n). Moreover, we

define the following functions: m : S → P, m′ : S → P′, mE : S → PE , such
that m(ei) = pi, m′(ei) = p′i, m

E(ei) = pEi , for all 1 ≤ i ≤ n. The functions
map the background set entities to the corresponding variables of the
encoding.

Single state. A state w ∈ W is encoded as the conjunction of all the
variables corresponding to the entities that are present in w, and the
conjunction of all the negations of the variables that are not present in
w:

Stw(p) =
( ∧
e∈w
m(e)

)
∧
( ∧
e∈(S\w)

¬m(e)
)
.

Sets of states. A set W ⊆ W is encoded as the disjunction of all the
encoded states that are in W:

SetStW (p) =
∨
w∈W

Stw(p).

Context sets. A set α ⊆ S of context entities is encoded as follows:

Ctα(pE) =
( ∧
e∈α
mE(e)

)
∧
( ∧
e∈(S\α)

¬mE(e)
)
.
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7 Encoding icrrs into boolean functions

Sets of context sets. A set Ψ ⊆ 2E of sets of context entities is encoded
as the disjunction of all the encoded sets of Ψ:

SetCtΨ(pE) =
∨
α∈Ψ

Ctα(pE).

Entity production condition. A single entity e ∈ S can be produced
if there exists a reaction a ∈ Prod(e) that is enabled, that is, all of
the variables corresponding to reactants of a (including the variables
representing the context) are true and all of the variables corresponding
to inhibitors of a (also including the variables representing the context)
are false. The formula encoding this is defined as follows:

– if Prod(e) 6= ∅, then

Ene
(
p,pE

)
=

∨
a∈Prod(e)

( ∧
e′∈Ra

(m(e′)∨mE(e′))∧
∧
e′∈Ia

¬(m(e′)∨mE(e′))
)

;

– if Prod(e) = ∅, then

Ene
(
p,pE

)
= false.

Entity production. The function Pre
(
p,pE ,p′

)
encodes the production

of a single entity e ∈ S. When the production of e is enabled, then the
variable corresponding to e is required to be true; otherwise, the variable
is required to be false.

Pre
(
p,pE ,p′

)
=
(
Ene
(
p,pE

)
∧ m′(e)

)
∨
(
¬Ene

(
p,pE

)
∧ ¬m′(e)

)
.

Permitted context sets. The following formula encodes the permitted
context sets by blocking the not allowed context entities.

PCt
(
pE
)

=
∧

e∈(S\E)

¬mE(e).

Transition relation. To encode the transition relation, we define the
function that is the conjunction of the entity production encodings for
all the background set entities and restricts the allowed context sets.

Tr
(
p,pE ,p′

)
=
∧
e∈S

Pre
(
p,pE ,p′

)
∧ PCt

(
pE
)
.
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The described encoding method can be used for the symbolic model
checking problem for RSTL. In the following theorem we state the
complexity of this problem.

Theorem 7.1. The symbolic model checking problem for RSTL is PSPACE-
complete.

Proof. The theorem follows from the fact that the symbolic model check-
ing for CTL is PSPACE-complete [9] and that the transition relation
of an icrrs can be represented (encoded in polynomial time) with a
boolean function, as demonstrated above. Moreover, the complexity of
the verification algorithm for RSTL does not change with respect to
CTL. This follows from the fact that RSTL only restricts the choice
of the transitions to be considered. Therefore, in the symbolic model
checking algorithm we replace the function computing the predecessors
of a given state with the function pre∃Ψ(X) which restricts the choice of
the predecessors to only those accessible via Ψ (see Section 6). In the
symbolic model checking algorithm this requires one more conjunction
to be computed at each iteration, therefore the modification introduces
only a difference of a constant in the overall complexity.

8 Conclusions

We have introduced a temporal logic for reaction systems (RSTL) allowing
to express properties that depend on the context sequences specified by
the context sets in the temporal operators. We have also described a
symbolic verification method for RSTL and provided some complexity
results for the problems of model checking and symbolic model checking
for RSTL.

This paper is the first step towards verification of reaction systems.
We are also planning to work on the experimental evaluation of the
presented method and a comprehensive tool for the verification of reaction
systems.
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