PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statystical Analysis in Integration of Thermal Imaging and GNSS Satellite Measurements in Relation to Geological

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerous publications have confirmed the important contribution of applying GNSS satellite measurements in geologically unstable areas to the displacement measurements of engineering objects. Along with linking GNSS measurements of benchmarks considered to be stable in the long term to the nearest reference stations at appropriate measurement intervals. So, it was possible to improve the accuracy of measurements of vertical and horizontal coordinates in the area of Szczecin, ushering in coordinate errors of less than 2 and 5 mm. For objects of strategic use such as natural gas tanks located in salt formations, however, these values are too high. The displacement of salt formations is 0.5 mm per year. Therefore, I decided to review existing measurement methods in two areas with different geological structures - Szczecin and Wroclaw NW and SW Poland - as numerous spectrums of SAR methods. As a different method, I present the advantages of the radiometric method with the prospect of performing surveys in the abovementioned areas. The publication focuses on statistical analyses, and GNSS and radiometric field measurements are in progress.
Rocznik
Strony
68--84
Opis fizyczny
Bibliogr. 21 poz., il., tab., wykr.
Twórcy
  • Wroclaw University of Sciences and Technology, Faculty of Geoengineering, Mining and Geology, Wrocław, Poland
Bibliografia
  • 1. Grzempowski, P and Cacon, S 2005. The cause analysis of benchmark movements in the city of Wroclaw. Reports on Geodesy and Geoinformatics 3(74), 271-281.
  • 2. Zygmunt, M, Cacoń, S, Milczarek, W, Sanecki, J, Piotrowski, A and Stępień G 2020. The three-segment control and reliable monitoring of the deformation of the rock mass surface and engineering structures of the Miedzyodrze Islands in Szczecin, NW Poland. Geosciences 10(5), 179.
  • 3. Grzempowski, P, Badura, J, Milczarek, W, Blachowski, J, Głowacki, T and Zajac M 2020. Determination of the Long-Term Ground Surface Displacements Using a PSI Technique – Case Study on Wrocław (Poland). Applied Sciences 10(10), 3343.
  • 4. Azzad, H and Greg, E 2016. Soil Moisture Estimation in South-Eastern New Mexico Using High Resolution Synthetic Aparature Radar (SAR). Geosciences 6(1), 1.
  • 5. Rataj, M 1993. Teledetekcja Mikrofalowa – Podstawy i Pomiar wilgotności gleb. Fotointerpretacja w Geografii 23, 93-106.
  • 6. Sukhoon, Oh, Yeun-Chul, Ryu, Giuseppe, C, Christopher, T, S and Christopher M, C 2014. Measurement of SAR-induced temperature increase in a phantom and in vivo with comparison to numerical simulation. Magnetic Resonance in Medicine 71(5), 1923-1931.
  • 7. Han, Y and Westwater, ER 2000. Analysis and improvement of tipping calibration for ground-based microwave radiometers. IEEE Transactions Geoscience and Remote Sensing 38(3):1260-1276.
  • 8. Nicholas, C, C 1989. Radar reflectivity measurement: techniques and applications. Norwood: Artech House 767, 715-739.
  • 9. Burke, C, Wich, S, Kusin, K, McAree, O, Harrison, M, E, Ripoll, B, Ermiasi, Y, Mulero-Pázmány, M and Longmore S 2019. Thermal-Drones as a Safe and Reliable Method for Detecting Subterranean Peat Fires. Drones 3(1), 23.
  • 10. Le Hegarat-Mascle, S, Zribi, M, Alem, F, Weisse, A, C and Loumagne, C 2002. Soil moisture estimation from ERS/SAR data: toward an operational methodology. IEEE Transactions on Geoscience and Remote Sensing 40(1), 2647-2658.
  • 11. Ferretti, A, Prati, C and Rocca, F 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geosciences and Remote Sensing 38, 2202-2212.
  • 12. Gee, D, Sowter, A, Novellino, A, Marsh, S and Gluyas, J 2016. Monitoring land motion due to natural gas extraction: Validation of the Intermittent SBAS (ISBAS) DInSAR algorithm over gas fields of North Holland, The Netherlands. Marine and Petroleum Geology 77, 1338-1354.
  • 13. Sandwell, D, Mellors, R, Tong, X, Wei, M and Wessel, P 2011. GMTSAR: An InSAR Processing System Based on Generic Mapping Tools. Lawrence Livermore National Laboratory 4(23), 11.
  • 14. Meyer, Z, Coufal, R, Kowalów, M and Szczygielski T 2011. Peat consolidation. New approach. Archives of Civil Engineering, LVII, 2, 173-186.
  • 15. Jarominska, M 2016. Studies of changes in the filtration coefficient depending on the porosity index in weak-bearing soils. Construction and Architecture 15(3), 135-144.
  • 16. Bednarek, R 2003. Model of consolidation of soil with elastic-plastic properties under variable loading. Zeszyty Naukowe Politechniki Śląskiej. Series: Construction 97.
  • 17. Marciszak, W 2019. Technical expertise of benchmarks for observation of vertical displacement at the site of the Thermal Waste Disposal Plant in Szczecin. [Technical report from benchmarks measurements ZTUO-Szczecin].
  • 18. Greń, J 1987. Statystyka Matematyczna, PWN, Warszawa.
  • 19. Kopczynska, O 2011. Empirical model of organic soil settlement. Budownictwo. Czasopismo Techniczne 19, 175-186.
  • 20. Palmaka, M 2011. Land subsidence modeling in mining area of open pit Brown Coal Mine Belchatow – a new approach - a new approach. Przeglad Geologiczny 59(3), 245-250.
  • 21. PN-86/B-02480. Grunty budowlane. Okreslenia, symbole, podzial, rodzaj gruntow [Building land. Terms, symbols, division, type of land].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2687df1-6a23-4de8-9875-2f5e2355cc60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.