PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Results of numerical modeling of three-pipe heat exchanger for livestock premises

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wyniki modelowania numerycznego trójrurowego wymiennika ciepła dla pomieszczeń inwentarskich
Języki publikacji
EN
Abstrakty
EN
Developed a three-pipe heat recovery system containing three coaxially installed pipes (inner, middle and outer), a condensate drain pipe that passes through the outer pipe and is located at the bottom of the middle pipe, an exhaust shaft that passes through the outer pipe, supply and discharge air filter, which is additionally equipped with an ultraviolet lamp. As a result of numerical modeling of the heat recovery device, the distribution of the temperature and vector velocity fields is established.
PL
Opracował trójrurowy system odzysku ciepła składający się z trzech współosiowo zainstalowanych rur (wewnętrznej, środkowej i zewnętrznej), rury spustowej kondensatu, która przechodzi przez rurę zewnętrzną i znajduje się na dole rury środkowej, szybu wylotowego, który przechodzi przez rurę zewnętrzną rurowy, filtr powietrza nawiewanego i wylotowego, który dodatkowo wyposażony jest w lampę ultrafioletową. W wyniku modelowania numerycznego urządzenia do odzysku ciepła ustala się rozkład pól temperatury i prędkości wektorowych.
Rocznik
Strony
72--75
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Vinnytsia National Agrarian University, (21008, 3 Sonyachna str., Vinnytsia, Ukraine)
autor
  • Vinnytsia National Agrarian University, (21008, 3 Sonyachna str., Vinnytsia, Ukraine
  • Vinnytsia National Agrarian University, (21008, 3 Sonyachna str., Vinnytsia, Ukraine
  • Vinnytsia National Agrarian University, (21008, 3 Sonyachna str., Vinnytsia, Ukraine
Bibliografia
  • [1]. Prishlyak V. M., Yaropud V. M. Substantiation of constructive parameters of recuperative heat utilizers for livestock premises. Collection of scientific works of Vinnytsia National Agrarian University. Series: Technical Sciences. 85 (2014), Iss. 2, 102- 112.
  • [2]. Poberezhets Ju., Chudak R., Kupchuk, I., Yaropud V., Rutkevych V. Effect of probiotic supplement on nutrient digestibility and production traits on broiler chicken. Agraarteadus. 32 (2021), nr. 2, 296-302. https://doi.org/10.15159/jas.21.28
  • [3]. Kaletnik G.M., Yaropud V.M. Theoretical research of pneumatic losses of air heat exchanger of side-evaporating type of livestock premises. Machinery & Energetics. Journal of Rural Production Research. 12 (2021), nr. 4, 35-41.
  • [4]. Kaletnik G.M., Yaropud V.M. Physical and mathematical model of the ventilation system for injecting clean air in livestock premises. Engineering, energy, transport of agro-industrial complex. 114 (2021), nr. 3, 4-15. https://doi.org/10.37128/2520- 6168-2021-3-1
  • [5]. Kovlevsky I. A. The microclimate of livestock buildings. Bulletin of the National Academy of Sciences of Belarus. Series of agricultural sciences. 5 (2005), 157–158.
  • [6]. Yaropud V.M., Aliyev E.B. The results of the inspection of the state of the microclimate in the pigsty with a negative pressure ventilation system. Engineering, energy, transport of agro industrial complex. 113 (2021), nr. 2, 168-177.
  • [7]. Hygiene of farm animals. Book 1. General zoohygiene. Edited by A. F. Kuznetsova and M. V. Demchuk. Agropromizdat. (1991), 200 p.
  • [8]. Zaitsev A. M., Zhiltsov V. I., Shavrov A. V. Microclimate of livestock complexes. Agropromizdat. (1986),192 p.
  • [9]. Gunko, I., Hraniak, V., Yaropud, V., Kupchuk, I., Rutkevych, V. Optical sensor of harmful air impurity concentration. Przegląd Elektrotechniczny. 97 (2021), nr. 7, 76-79. https://doi.org/10.15199/48.2021.07.15
  • [10]. Gusev A. E., Mityukov N. V., Busygina E. L. Expediency of heat exchangers in the ventilation system. International Journal of Experimental Education. 8 (2012), 63-64.
  • [11]. Vatin N. I., Smotrakova M. V. Feasibility study for the use of ventilation systems with rotary heat recovery: monograph. (2003), 75 p.
  • [12]. Nimich G. V., Mikhailov V. A., Bondar E. S. Modern ventilation and air conditioning systems. Publishing house «Avanpost-Prim». (2003), 626 p.
  • [13]. Yaropud V., Hunko I., Aliiev E., Kupchuk I. Justification of the mechatronic system for pigsty microclimate maintenance. Agraarteadus. 32 (2021), nr. 2, 212–218. https://doi.org/10.15159/jas.21.21
  • [14]. Yaropud, V. Analytical Study of the Automatic Ventilation System for the Intake of Polluted Air from the Pigsty. Scientific horizons. 24 (2021), nr. 3, 19-27.
  • [15]. Baron V. G., Gershkovich V. G. Exhaust air heat recovery device: US Pat. 11134 Ukraine: 7F24F7 / 007 No u 2005 04888; stated 23.05.2005; publ. 15.12.2005, Bull. № 12
  • [16]. Yaropud V.M., Babin I.A. Three-pipe heat recovery unit: US Pat. 126074 Ukraine: IPC (2018.01) F24F 5/00 No u 2017 11085; stated 13.11.2017; publ. 11.06.2018, Bull. № 11
  • [17]. Prishlyak V. M., Yaropud V. M., Babin I. A. Three-pipe heat recovery unit: US Pat. 133549 Ukraine: IPC F24F 3/052 (2006.01); stated 11.19.2018; publ. 10.04.2019, Bull. № 7.
  • [18]. Kuznietsova I., Bandura V., Paziuk V., Tokarchuk O., Kupchuk I. Application of the differential scanning calorimetry method in the study of the tomato fruits drying process. Agraarteadus. 31 (2020), nr. 2, 173–180. https://doi.org/10.15159/jas.20.14
  • [19]. Shtuts A., Kolisnyk M., Vydmysh A., Voznyak O., Baraban S., Kulakov P. Improvement of stamping by rolling processes of pipe and cylindrical blades on experimental research. Key Engineering Materials. 844 (2020), 168–181. https://doi.org/10.4028/www.scientific.net/kem.844.168
  • [20]. Yaropud V., Honcharuk I., Datsiuk D., Aliiev E. The model for random packaging of small-seeded crops’ seeds in the reservoir of selection seeder’s sowing unit. Agraarteadus. 33 (2022), nr. (1), 199-208. https://doi.org/10.15159/jas.22.08
  • [21]. Shevchenko I., Aliiev E., Viselga G., Kaminski J. Modeling separation process for sunflower seed mixture on vibro-pneumatic separators. Mechanika. 27 (2021), nr. 4, 311- 320. https://doi.org/10.5755/j02.mech.27647
  • [22]. Paziuk V., Vyshnevskiy V., Tokarchuk O., Kupchuk I. Substantiation of the energy efficient schedules of drying grain seeds. Bulletin of the Transilvania University of Braşov, Series II: Forestry, Wood Industry, Agricultural Food Engineering. 63 (2021), nr. 14, 137–146. https://doi.org/10.31926/but.fwiafe.2021.14.63.2.13
  • [23]. Kupchuk I., Burlaka S., Galushchak A., Yemchyk T., Galushchak D., Prysiazhniuk Yu. Research of autonomous generator indicators with the dynamically changing component of a two-fuel mixture. Polityka Energetyczna. 25 (2022), nr. 2, 147–162. https://doi.org/10.33223/epj/150746
  • [24]. Rutkevych V., Kupchuk I., Yaropud V., Hraniak V., Burlaka S. Numerical simulation of the liquid distribution problem by an adaptive flow distributor. Przegląd Elektrotechniczny. 98 (2022), nr. 2, 64-69. https://doi.org/10.15199/48.2022.02.13
  • [25]. Gunko I., Babyn I, Aliiev E., Yaropud V., Hrytsun A. Research into operating modes of the air injector of the milking parlor flushing system. UPB Scientific bulletin, Series D: Mechanical Engineering, 83 (2021), nr. 2, 297-310.
  • [26]. Kupchuk I., Yaropud V., Hraniak V., Poberezhets Ju., Tokarchuk O., Hontar V., Didyk A. Multicriteria compromise optimization of feed grain grinding process. Przegląd Elektrotechniczny. 97 (2021), nr. 11, 179-183. https://doi.org/10.15199/48.2021.11.33
  • [27]. Yaropud V., Kupchuk I., Burlaka S., Poberezhets Ju., Babyn I. Experimental studies of design-and-technological parameters of heat exchanger. Przegląd Elektrotechniczny. 98 (2022), nr. 10, 57-60. https://doi.org/10.15199/48.2022.10.10
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d26176ea-0b20-4d98-affd-96b60c6d90c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.