PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing flash flood risk prediction: A case study from the Assaka watershed, Guelmim region, Southwestern Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since the onset of the Industrial Revolution, significant climatic shifts have led to various environmental imbalances globally, notably increasing the frequency of flash floods, especially in vulnerable regions like the Assaka watershed in southwestern Morocco. This study aims to enhance flash flood risk prediction by integrating Machine Learning (ML) algorithms with Geographic Information System (GIS) technology. The Random Forest (RF) algorithm was employed to analyze over eight million data points, using fourteen predictors categorized into topographic (e.g., Altitude, Slope, Topographic Wetness Index (TWI)), climatic (e.g., Land Surface Temperature (LST), Soil Moisture Index (SMI)), and geological factors (e.g., Drainage Density, Soil Type, Lithology). These variables were derived from remotely sensed data and geospatial analyses. The RF model classified the Assaka watershed into five flood susceptibility levels: lowest, low, medium, high, and highest. The results indicated that the most vulnerable areas are near the watershed outlet and the main tributaries, Essayed and Oum Laachar Wadis. These regions are characterized by high land surface temperatures, low drainage density, poor soil moisture, and specific geological conditions, all of which contribute to heightened flood risk. The model's performance was evaluated using multiple metrics, achieving Precision (0.968), Recall (0.967), Accuracy (0.967), F1 Score (0.965), Kappa Statistic (0.839), and an AUC of 1.0, highlighting its robustness and predictive capabilities. The originality of this study lies in its comprehensive integration of ML with GIS to develop a highly reliable flood susceptibility map for the Assaka watershed. This framework addresses existing gaps in flood risk assessment, offering a significant advancement over traditional methods through its use of advanced data-driven modeling techniques. The findings provide essential insights for prioritizing conservation and flood management strategies, contributing to better preparedness against flash floods in the Guelmim region and potentially other similar environments globally.
Twórcy
  • Laboratory of Applied Geophysics, Geotechnics, Engineering Geology, and Environment, Mohammadia Engineering School, Mohammed V University in Rabat, 765, Av. Ibn Sina, Agdal, Rabat, Morocco
  • Laboratory of Applied Geophysics, Geotechnics, Engineering Geology, and Environment, Mohammadia Engineering School, Mohammed V University in Rabat, 765, Av. Ibn Sina, Agdal, Rabat, Morocco
  • Laboratory for Water Analysis and Modeling of Natural Resources, Mohammadia Engineering School, Mohammed V University in Rabat, BP:765 Ibn Sina Avenue Agdal, Rabat, Morocco
autor
  • Laboratory for Water Analysis and Modeling of Natural Resources, Mohammadia Engineering School, Mohammed V University in Rabat, BP:765 Ibn Sina Avenue Agdal, Rabat, Morocco
autor
  • Laboratory of Applied Geophysics, Geotechnics, Engineering Geology, and Environment, Mohammadia Engineering School, Mohammed V University in Rabat, 765, Av. Ibn Sina, Agdal, Rabat, Morocco
Bibliografia
  • 1. Aangri, A., Hakkou, M., Krien, Y., Chtioui, T., & Benmohammadi, A. (2024). Risk Assessment of Marine Flooding along the Agadir and Taghazout Coasts (Moroccan Atlantic). Journal of Coastal Research, 40(1). https://doi.org/10.2112/ jcoastres-d-23-00033.1
  • 2. Abd El-Hamid, H. T., Kaloop, M. R., Abdalla, E. M., Hu, J. W., & Zarzoura, F. (2021). Assessment and prediction of land-use/land-cover change around Blue Nile and White Nile due to flood hazards in Khartoum, Sudan, based on geospatial analysis. Geomatics, Natural Hazards and Risk, 12(1), 1258–1286. https://doi.org/10.1080/19475705.2021.1923577
  • 3. ABHSM of Morocco. (n.d.). ABHSM of Morocco.
  • 4. Ait El Haj, F., Ouadif, L., & Akhssas, A. (2023). Simulating and predicting future land-use/land cover trends using CA- Markov and LCM models. Case Studies in Chemical and Environmental Engineering, 7. https://doi.org/10.1016/j.cscee.2023.100342
  • 5. Al-Aizari, A. R., Alzahrani, H., AlThuwaynee, O. F., Al-Masnay, Y. A., Ullah, K., Park, H. J., Al-Areeq, N. M., Rahman, M., Hazaea, B. Y., & Liu, X. (2024). Uncertainty reduction in flood susceptibility mapping using random forest and extreme gradient boosting algorithms in two tropical desert cities, Shibam and Marib, Yemen. Remote Sensing, 16(2). https://doi.org/10.3390/rs16020336
  • 6. Albertini, C., Gioia, A., Iacobellis, V., Petropoulos, G. P., & Manfreda, S. (2024). Assessing multi-source random forest classification and robustness of predictor variables in flooded areas mapping. Remote Sensing Applications: Society and Environment, 35. https://doi.org/10.1016/j.rsase.2024.101239
  • 7. Allafta, H., & Opp, C. (2021). GIS-based multi-criteria analysis for flood prone areas mapping in the trans-boundary Shatt Al-Arab basin, Iraq-Iran. Geomatics, Natural Hazards and Risk, 12(1), 2087–2116. https://doi.org/10.1080/19475705.2021.1955755
  • 8. Atanga, R. A., & Tankpa, V. (2021, August 6). Climate change, flood disaster risk and food security nexus in northern ghana. frontiers in sustainable food systems. Frontiers Media S.A. https://doi.org/10.3389/fsufs.2021.706721
  • 9. Atta, H. A. (2023). Seasonal Flooding Impact on Land Surface Temperature(LST) in Response to Vegetation Index Using Spectral Radiance Model in Kirkuk, Iraq. In IOP Conference Series: Earth and Environmental Science 1202. Institute of Physics. https://doi.org/10.1088/1755-1315/1202/1/012019
  • 10. Avand, M., Kuriqi, A., Khazaei, M., & Ghorbanzadeh, O. (2022). DEM resolution effects on machine learning performance for flood probability mapping. Journal of Hydro-Environment Research, 40, 1–16. https://doi.org/10.1016/j.jher.2021.10.002
  • 11. Avci, C., Budak, M., Yagmur, N., & Balcik, F. B. (2023). Comparison between random forest and support vector machine algorithms for LULC classification. International Journal of Engineering and Geosciences, 8(1), 1–10. https://doi.org/10.26833/ ijeg.987605
  • 12. Azari, B., Hassan, K., Pierce, J., & Ebrahimi, S. (2022). Evaluation of machine learning methods application in temperature prediction. Computational Research Progress In Applied Science & Engineering, 8(1), 1–12. https://doi.org/10.52547/ crpase.8.1.2747
  • 13. Bakhtiari, V., Piadeh, F., Behzadian, K., & Kapelan, Z. (2023, December 1). A critical review for the application of cutting-edge digital visualisation technologies for effective urban flood risk management. Sustainable Cities and Society. Elsevier Ltd. https://doi.org/10.1016/j.scs.2023.104958
  • 14. Bannari, A., Bahi, H., & Rhinane, H. (2020). Evaluating land surface moisture conditions before and after flash-flood storm from optical and thermal data: models comparison and validation. In International Geoscience and Remote Sensing Symposium (IGARSS) 5038–5041. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/IGARSS39084.2020.9323655
  • 15. Bannari, Abderrazak, Rhinane, H., & Bahi, H. (2019). Synergy between SMOS-MIRAS and Landsat-OLI/TIRS Data for Soil Moisture Mapping before, during, and after Flash-Flood Storm in Southwestern Morocco. In Topics in Hydrometerology. IntechOpen. https://doi.org/10.5772/ intechopen.79554
  • 16. Bano, S. (2024). Appraisal the Impact of Urban Evolution and Change on Land Use and Land Cover: A Case Study of Abbottabad District. Retrieved from https://www.researchgate.net/ publication/382399124
  • 17. Basri, H., Syakur, S., Azmeri, A., & Fatimah, E. (2022). Floods and their problems: Land uses and soil types perspectives. In IOP Conference Series: Earth and Environmental Science 951. IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/951/1/012111
  • 18. Bhattacharjee, N. (n.d.). Links among drainage density, frequency and flooding in Nanoi River Basin, Assam. International Journal of Interdisciplinary Research in Science Society and Culture(IJIRSSC), 2(1), 2016. Retrieved from www.ijirssc.in
  • 19. Boulesteix, A.-L., Janitza, S., Kruppa, J., & König, I. R. (2012). Overview of Random Forest Methodology and Practical Guidance with Emphasis on Computational Biology and Bioinformatics Overview of Random Forest Methodology and Practical Guidance with Emphasis on Computational Biology and Bioinformatics pre-review version of a manuscript accepted for publication in WIREs Data Mining & Knowledge Discovery. Retrieved from http://www. stat.uni-muenchen.de
  • 20. Buttle, J. M., Allen, D. M., Caissie, D., Davison, B., Hayashi, M., Peters, D. L., Pomeroy, J. W., Simonovic, S., St-Hilaire, A., & Whitfield, P. H. (2016). Flood processes in Canada: Regional and special aspects. Canadian Water Resources Journal, 41(1–2), 7–30. https://doi.org/10.1080/07011784.2 015.1131629
  • 21. Calderón, H., Pérez, J. E., Chow, M., & Reyna, J. B. (2020). Índice de Posición Topográfica (TPI) para identificar áreas inundables y zonificación de especies vegetales en un manglar del Pacífico Sur de Nicaragua. Revista Torreón Universitario, 9(26), 124–146. https://doi.org/10.5377/torreon. v9i26.10264
  • 22. Coopera, G. F., Aliferis, C. F., Ambrosinoa, R., Aronisb, J., Buchananb, B. G., Caruana’, R., Fined, M. J., Glymour, C., Gordon, G., Hanusad, B. H., Janoskyf, J. E., Meek, C., Mitchell, T., Richardson, T., & Spirtes, P. (1997). An evaluation of machine-learning methods for predicting pneumonia mortality. Artificial Intelligence in Medicine 9.
  • 23. Cotti, D., Harb, M., Hadri, A., Aboufirass, M., Chaham, K. R., Libertino, A., Campo, L., Trasforini, E., Krätzschmar, E., Bellert, F., & Hagenlocher, M. (2022). An integrated multi-risk assessment for floods and drought in the Marrakech-Safi Region (Morocco). Frontiers in Water, 4. https://doi. org/10.3389/frwa.2022.886648
  • 24. De Risi, R, Jalayer, F., De Paola, F., & Giugni, M. (2014). Probabilistic delineation of flood-prone areas based on a digital elevation model and the extent of historical flooding: the case of Ouagadougou.
  • 25. De Risi, Raffaele, Jalayer, F., De Paola, F., & Lindley, S. (2018). Delineation of flooding risk hotspots based on digital elevation model, calculated and historical flooding extents: the case of Ouagadougou. Stochastic Environmental Research and Risk Assessment, 32(6), 1545–1559. https://doi.org/10.1007/s00477-017-1450-8
  • 26. Diallo, I., Xue, Y., Chen, Q., Ren, X., & Guo, W. (2024). Effects of spring Tibetan Plateau land temperature anomalies on early summer floods/ droughts over the monsoon regions of South East Asia. Climate Dynamics, 62(4), 2659–2681. https://doi.org/10.1007/s00382-021-06053-8
  • 27. Diallo, I., Xue, Y., Li, Q., De Sales, F., & Li, W. (2019). Dynamical downscaling the impact of spring Western US land surface temperature on the 2015 flood extremes at the Southern Great Plains: effect of domain choice, dynamic cores and land surface parameterization. Climate Dynamics, 53(1–2), 1039–1061. https://doi.org/10.1007/ s00382-019-04630-6
  • 28. Dietterich, T. G. (1990). Machine Learning 1. Annual Review of Computer Science, 4.
  • 29. Elmahdy, S., Ali, T., & Mohamed, M. (2020). Flash flood susceptibility modeling and magnitude index using machine learning and geohydrological models: A modified hybrid approach. Remote Sensing, 12(17). https://doi.org/10.3390/RS12172695
  • 30. FA2. (n.d.).
  • 31. F.Y, O., J.E.T, A., O, A., J. O, H., O, O., & J, A. (2017). Supervised Machine Learning Algorithms: Classification and Comparison. International Journal of Computer Trends and Technology, 48(3), 128–138. https://doi.org/10.14445/22312803/ IJCTT-V48P126
  • 32. Ganjirad, M., & Delavar, M. R. (2023). Flood risk mapping using random forest and support vector machine. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 10, 201–208. Copernicus Publications. https://doi.org/10.5194/isprs-annals-X-4-W1-2022-201-2023
  • 33. Garosi, Y., Sheklabadi, M., Conoscenti, C., Pourghasemi, H. R., & Van Oost, K. (2019). Assessing the performance of GIS- based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Science of the Total Environment, 664, 1117–1132. https://doi.org/10.1016/j.scitotenv.2019.02.093
  • 34. Getirana, A., Kumar, S. V., Konapala, G., & Ndehedehe, C. E. (2021). Impacts of fully coupling land surface and flood models on the simulation of large wetlands’ water dynamics: the case of the Inner Niger Delta. Journal of Advances in Modeling Earth Systems, 13(5). https://doi.org/10.1029/2021MS002463
  • 35. Ghouldan, A., Benhoussa, A., & Ichen, A. (2024). Evolution of land use/land cover in mediterranean forest areas – a case study of the Maamora in the North-West Morocco. Ecological Engineering & Environmental Technology, 25(10), 134–149. https://doi.org/10.12912/27197050/191413
  • 36. Han, C., Ma, T., Xu, G., Chen, S., & Huang, R. (2022). Intelligent decision model of road maintenance based on improved weight random forest algorithm. International Journal of Pavement Engineering, 23(4), 985–997. https://doi.org/10.1080 /10298436.2020.1784418
  • 37. Hasan, M. M., Mondol Nilay, M. S., Jibon, N. H., & Rahman, R. M. (2023). LULC changes to riverine flooding: A case study on the Jamuna River, Bangladesh using the multilayer perceptron model. Results in Engineering, 18. https://doi.org/10.1016/j.rineng.2023.101079
  • 38. Hawker, L., Bates, P., Neal, J., & Rougier, J. (2018). Perspectives on digital elevation model (DEM) simulation for flood modeling in the absence of a high-accuracy open access global DEM. Frontiers in Earth Science, 6. https://doi.org/10.3389/ feart.2018.00233
  • 39. HCP of Morocco. (2014). statistics of Assaka watershed.
  • 40. He, X., Fang, Y., Wang, B., & Huang, X. (2024a). Towards a verifiable, uncertainty-controlled assessment of the spatiotemporal dynamics of social vulnerability to flash floods. Ecological Indicators, 166. https://doi.org/10.1016/j.ecolind.2024.112323
  • 41. He, X., Fang, Y., Wang, B., & Huang, X. (2024b). Towards a verifiable, uncertainty-controlled assessment of the spatiotemporal dynamics of social vulnerability to flash floods. Ecological Indicators, 166. https://doi.org/10.1016/j.ecolind.2024.112323
  • 42. Heerdegen, R. G., & Beran, M. A. (1982). Quantifying source areas through land surface curvature and shape. Journal of Hydrology 57.
  • 43. Heitmuller, F. T., Hudson, P. F., & Asquith, W. H. (2015). Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: Bankfull and macrochannels in the Llano River watershed, central Texas, USA. Geomorphology, 232, 1–19. https:// doi.org/10.1016/j.geomorph.2014.12.033
  • 44. Hermawan, W. G., Sunarto, Suryawan, I. W. K., & Suhardono, S. (2024). Hydrogeomorphological assessment of springs on the northern slope of Mount Merbabu. Ecological Engineering and Environmental Technology, 25(11), 30–43. https://doi.org/10.12912/27197050/191984
  • 45. Ibrahim, A. M., & Bennett, B. (2014). The assessment of machine learning model performance for predicting alluvial deposits distribution. In Procedia Computer Science 36, 637–642. Elsevier B.V. https://doi.org/10.1016/j.procs.2014.09.067
  • 46. Ikirri, M., Faik, F., Echogdali, F. Z., Antunes, I. M. H. R., Abioui, M., Abdelrahman, K., Fnais, M. S., Wanaim, A., Id-Belqas, M., Boutaleb, S., Sajinkumar, K. S., & Quesada-Román, A. (2022). Flood Hazard Index Application in Arid Catchments: Case of the Taguenit Wadi Watershed, Lakhssas, Morocco. Land, 11(8). https://doi.org/10.3390/land11081178
  • 47. Ionno, A., Arsenault, R., Troin, M., Martel, J. L., & Brissette, F. (2024). Impacts of climate change on flood volumes over North American catchments. Journal of Hydrology, 630. https://doi.org/10.1016/j. jhydrol.2024.130688
  • 48. Iresh, A. D. S., Dilthara, G. W. A. S., & Sugeeshwara, S. P. C. (2024). Estimation of catchment parameters of snyder’s synthetic method for water resources planning and flood management in Sri Lanka. Engineer: Journal of the Institution of Engineers, Sri Lanka, 57(2), 81–86. https://doi.org/10.4038/engineer.v57i2.7595
  • 49. Isma, F., Kusuma, M. S. B., Nugroho, E. O., & Adityawan, M. B. (2024). Flood hazard assessment in Kuala Langsa village, Langsa city, Aceh Province- Indonesia. Case Studies in Chemical and Environmental Engineering, 10. https://doi.org/10.1016/j. cscee.2024.100861
  • 50. Ismail, L., Materwala, H., & Hennebelle, A. (2021). Comparative analysis of machine learning models for students’ performance prediction. In Advances in Intelligent Systems and Computing 1352, 149–160. Springer Science and Business Media Deutschland GmbH. https://doi. org/10.1007/978-3-030-71782-7_14
  • 51. Jeong, J. H., Park, R. J., & Kim, S. B. (2003). Flooding Data Measured in Annular Narrow Gaps with Large Diameter of Curvature.
  • 52. Kamal, M., & Bablu, T. A. (n.d.). International Journal of Applied Machine Learning and Computational Intelligence Machine Learning Models for Predicting Click-through Rates on social media: Factors and Performance Analysis.
  • 53. Kang, S., Yeom, J., & Jung, J. (2021). Urban form and natural hazards: Exploring the dual aspect concept of urban forms on flood damage. Sustainability (Switzerland), 13(16). https://doi. org/10.3390/su13169007
  • 54. Khaddari, A., Bouziani, M., Moussa, K., Sammar, C., Chakiri, S., Hadi, H. EL, Jari, A., & Titafi, A. (2022). Evaluation of precipitation spatial interpolation techniques using GIS for better prevention of extreme events: Case of the Assaka Watershed (Southern Morocco). Ecology, Environment and Conservation, 28(8), S1–S10. https://doi.org/10.53550/eec.2022.v28i08s.001
  • 55. Khaddari, A., Jari, A., Chakiri, S., El Hadi, H., Labriki, A., Hajaj, S., Goumghar, L., El Harti, A., & Abioui, M. (2023a). A comparative analysis of analytical hierarchy process and fuzzy logic modeling in flood susceptibility mapping in the Assaka Watershed, Morocco. Journal of Ecological Engineering, 24(8), 62–83. https://doi.org/10.12911/22998993/165958
  • 56. Khaddari, A., Jari, A., Chakiri, S., El Hadi, H., Labriki, A., Hajaj, S., Goumghar, L., El Harti, A., & Abioui, M. (2023b). A comparative analysis of analytical hierarchy process and fuzzy logic modeling in flood susceptibility mapping in the Assaka Watershed, Morocco. Journal of Ecological Engineering, 24(8), 62–83. https://doi.org/10.12911/22998993/165958
  • 57. Kim, Y., Hardisty, R., Torres, E., & Marfurt, K. J. (2018). Seismic facies classification using random forest algorithm. In SEG Technical Program Expanded Abstracts 2161–2165. Society of Exploration Geophysicists. https://doi.org/10.1190/ segam2018-2998553.1
  • 58. Krause, J., Gulshan, V., Rahimy, E., Karth, P., Widner, K., Corrado, G. S., Peng, L., & Webster, D. R. (2017). Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. https://doi.org/10.1016/j.ophtha.2018.01.034
  • 59. Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, G. R., Kron, W., Benito, G., Honda, Y., Takahashi, K., & Sherstyukov, B. (2014). Le risque d’inondation et les perspectives de changement climatique mondial et régional. Hydrological Sciences Journal, 59(1), 1–28. https://doi.org/10.108 0/02626667.2013.857411
  • 60. Langston, A. L., & Temme, A. J. A. M. (2019). Bedrock erosion and changes in bed sediment lithology in response to an extreme flood event: The 2013 Colorado Front Range flood. Geomorphology, 328, 1–14. https://doi.org/10.1016/j. geomorph.2018.11.015
  • 61. Lawford, R. G., Prowse, T. D., Hogg, W. D., Warkentin, A. A., & Pilon, P. J. (1995). Hydrometeorological aspects of flood hazards in Canada. Atmosphere - Ocean, 33(2), 303–328. https://doi.org/10.1080/07055900.1995.9649535
  • 62. Lee, S., & Rezaie, F. (2022). Data used for GIS-based Flood Susceptibility Mapping. GEO DATA, 4(1), 1–15. https://doi.org/10.22761/dj2022.4.1.001
  • 63. Loeb, R., Van Daalen, E., Lamers, L. P. M., & Roelofs, J. G. M. (2007). How soil characteristics and water quality influence the biogeochemical response to flooding in riverine wetlands. Biogeochemistry, 85(3), 289–302. https://doi.org/10.1007/ s10533-007-9135-x
  • 64. Mahesh, B. (2020). Machine Learning Algorithms - A Review. International Journal of Science and Research (IJSR), 9(1), 381–386. https://doi.org/10.21275/art20203995
  • 65. Mahmouhi, N. El, Wartiti, M. El, Wissem, S. A., Kemmou, S., & El Bahi, S. (2016). Utilisation des systèmes d’information géographiques et des modèles hydrologiques pour l’extraction des caractéristiques physiques du bassin versant d’Assaka (Guelmim, sud du Maroc) [ The use of geographic information system for the extraction of physical characteristics of assaka watershed: sub-basins of sayed and oum laachar wadis (southern Morocco) ]. International Journal of Innovation and Applied Studies, 16. Retrieved from http://www.ijias.issr-journals.org/
  • 66. Malakouti, S. M. (2023). Utilizing time series data from 1961 to 2019 recorded around the world and machine learning to create a Global Temperature Change Prediction Model. Case Studies in Chemical and Environmental Engineering, 7. https://doi. org/10.1016/j.cscee.2023.100312
  • 67. Malik, S., Chandra Pal, S., Chowdhuri, I., Chakrabortty, R., Roy, P., & Das, B. (2020). Prediction of highly flood prone areas by GIS based heuristic and statistical model in a monsoon dominated region of Bengal Basin. Remote Sensing Applications: Society and Environment, 19. https://doi.org/10.1016/j.rsase.2020.100343
  • 68. Mao, D., Wang, Z., Du, B., Li, L., Tian, Y., Jia, M., Zeng, Y., Song, K., Jiang, M., & Wang, Y. (2020). National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 11–25. https://doi.org/10.1016/j.isprsjprs.2020.03.020
  • 69. Masmoudi, O., Jaoua, M., Jaoua, A., & Yacout, S. (2021). Data Preparation in Machine Learning for Condition-based Maintenance. Journal of Computer Science, 17(6), 525–538. https://doi.org/10.3844/ JCSSP.2021.525.538
  • 70. Mathieu, J., Weisrock, A., Wengler, L., Elie Brochier, J., Even, G., Fontugne, M., Mercier, N., Ouammou, A., Senegas, F., Valladas, H., Holocene, al, Sénégas, F., Valladass, H., Vernets, J.-L., & Wahll, L. (2004). Holocene deposits in the lower section of the Assaka wadi, South Morocco : Preliminary results. Holocene deposits in the lower section of the Assaka wadi, south Morocco: preliminary results Holocene deposits in the lower section of the Assaka wadi, south Morocco: preliminary results . Quaternaire, 15(2), 207–218. https://doi.org/10.3406/ quate.2004.1768ï
  • 71. Mavromatis, V., Rinder, T., Prokushkin, A. S., Pokrovsky, O. S., Korets, M. A., Chmeleff, J., & Oelkers, E. H. (2016). The effect of permafrost, vegetation, and lithology on Mg and Si isotope composition of the Yenisey River and its tributaries at the end of the spring flood. Geochimica et Cosmochimica Acta, 191, 32–46. https://doi.org/10.1016/j.gca.2016.07.003
  • 72. Mawasha, T. S., & Britz, W. (2022a). Hydrological impacts of land use - land cover change on urban flood hazard: A case study of the Jukskei River in Alexandra Township, Johannesburg, South Africa. South African Journal of Geomatics, 10(2), 139– 162. https://doi.org/10.4314/sajg.v10i2.11
  • 73. Mawasha, T. S., & Britz, W. (2022b). Hydrological impacts of land use - land cover change on urban flood hazard: A case study of the Jukskei River in Alexandra Township, Johannesburg, South Africa. South African Journal of Geomatics, 10(2), 139– 162. https://doi.org/10.4314/sajg.v10i2.11
  • 74. Mohtasham Moein, M., Saradar, A., Rahmati, K., Ghasemzadeh Mousavinejad, S. H., Bristow, J., Aramali, V., & Karakouzian, M. (2023, January 1). Predictive models for concrete properties using machine learning and deep learning approaches: A review. Journal of Building Engineering. Elsevier Ltd. https://doi.org/10.1016/j.jobe.2022.105444
  • 75. Mokarram, M., & Hojati, M. (n.d.). Comparison of Landform Classifications of Elevation, Slope, Relief and Curvature with Topographic Position Index in South of Bojnoord. https://doi.org/10.18869/ modares.Ecopersia.4.2.1343
  • 76. Mosavi, A., Ozturk, P., & Chau, K. W. (2018, October 27). Flood prediction using machine learning models: Literature review. Water (Switzerland). MDPI AG. https://doi.org/10.3390/w10111536
  • 77. Muthusamy, M., Casado, M. R., Butler, D., & Leinster, P. (2021). Understanding the effects of Digital Elevation Model resolution in urban fluvial flood modelling. Journal of Hydrology, 596. https://doi.org/10.1016/j.jhydrol.2021.126088
  • 78. Naghibi, S. A., Ahmadi, K., & Daneshi, A. (2017). Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resources Management, 31(9), 2761–2775. https:// doi.org/10.1007/s11269-017-1660-3
  • 79. Ngai, A. D., Ibrahim, R., & Selintung, M. (2024). Acid mine drainage treatment with organic waste in constructed wetlands – effluent recirculation. Ecological Engineering and Environmental Technology, 25(8), 245–260. https://doi.org/10.12912/27197050/189817
  • 80. Oytun, M., Tinazci, C., Sekeroglu, B., Acikada, C., & Yavuz, H. U. (2020). Performance Prediction and Evaluation in Female Handball Players Using Machine Learning Models. IEEE Access, 8, 116321–116335. https://doi.org/10.1109/ ACCESS.2020.3004182
  • 81. Papineni, S. L. V., Mallikarjuna Reddy, A., Yarlagadda, S., Yarlagadda, S., & Akkineni, H. (2021). An extensive analytical approach on human resources using random forest algorithm. International Journal of Engineering Trends and Technology, 69(5), 119–127. https://doi.org/10.14445/22315381/ IJETT-V69I5P217
  • 82. Parvin, M. I., Islam, M. A., Perveen, M. F., Jamal, M. R., Faruque, M. J., Hossen, B., Islam, K., & Sarker, M. M. (2024). Assessment of land use transition and crop intensification using geospatial technology in Bangladesh. Case Studies in Chemical and Environmental Engineering, 9. https://doi.org/10.1016/j.cscee.2024.100660
  • 83. Patil, A., & Singh, S. (2014). Differential private random forest. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2014 2623–2630. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICACCI.2014.6968348
  • 84. Patil, P. P., Jagtap, M. P., Khatri, N., Madan, H., Vadduri, A. A., & Patodia, T. (2024). Exploration and advancement of NDDI leveraging NDVI and NDWI in Indian semi-arid regions: A remote sensing-based study. Case Studies in Chemical and Environmental Engineering, 9. https://doi.org/10.1016/j. cscee.2023.100573
  • 85. Probst, P., Wright, M., & Boulesteix, A.-L. (2018). Hyperparameters and Tuning Strategies for Random Forest. https://doi.org/10.1002/widm.1301
  • 86. Rahaman, S. N., & Shermin, N. (2022). Identifying the effect of monsoon floods on vegetation and land surface temperature by using Google Earth Engine. Urban Climate, 43, 101162. https://doi.org/10.1016/j.uclim.2022.101162
  • 87. Riadi, B., Barus, B., Widiatmaka, Yanuar, M. J. P., & Pramudya, B. (2018). Identification and delineation of areas flood hazard using high accuracy of DEM data. In IOP Conference Series: Earth and Environmental Science 149. Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/149/1/012035
  • 88. Saha, A., Patil, M., Goyal, V. C., & Rathore, D. S. (2018). Assessment and Impact of Soil Moisture Index in Agricultural Drought Estimation Using Remote Sensing and GIS Techniques. 2. MDPI AG. https://doi.org/10.3390/ecws-3-05802
  • 89. Saha, P., Mitra, R., Das, J., & Mandal, D. K. (2024). Urban flash flood prediction modelling using probabilistic and statistical approaches. Results in Earth Sciences, 2, 100032. https://doi.org/10.1016/j. rines.2024.100032
  • 90. Said, A., & Ahmed, A. (2023). Drought variability in Agadir’s region (Southern Morocco) – recent and future trends. Ecological Engineering and Environmental Technology, 24(2), 241–250. https://doi. org/10.12912/27197050/157169
  • 91. Said, A., Ahmed, A., & Kharrim, M. El. (2023). Application of the cross-simulation method to the analysis of the rain-flow relationship from the gr2mmodel: case of the Taghjijt Sub-Basin (Guelmim- Morocco), 18(3). Retrieved from www.arpnjournals.com
  • 92. Said, A., Ahmed, A., Lahcen, B., & Rhita, B. (n.d.). Characterization of recent and future climatic trends in the region of Guelmim (Morocco). https://doi. org/10.1051/e3sconf/20
  • 93. Sarker, I. H. (2021, May 1). Machine learning: algorithms, real-world applications and research directions. SN Computer Science. Springer. https://doi. org/10.1007/s42979-021-00592-x
  • 94. Savargiv, M., Masoumi, B., & Keyvanpour, M. R. (2021). A new random forest algorithm based on learning automata. Computational Intelligence and Neuroscience, 2021. https://doi. org/10.1155/2021/5572781
  • 95. Shayannejad, M., & Ostad, A.-A.-K. (n.d.). Flood routing in rivers by numerical modeling Preissmann scheme, saint-venant 1 equation and muskingum’s method based on kinematic wave model 2 3 2. Retrieved from https://ssrn.com/abstract=4793265
  • 96. Silvestro, F., Gabellani, S., Delogu, F., Rudari, R., & Boni, G. (2013). Exploiting remote sensing land surface temperature in distributed hydrological modelling: The example of the Continuum model. Hydrology and Earth System Sciences, 17(1), 39– 62. https://doi.org/10.5194/hess-17-39-2013
  • 97. Sivrikaya, F., Günlü, A., Küçük, Ö., & Ürker, O. (2024). Forest fire risk mapping with Landsat 8 OLI images: Evaluation of the potential use of vegetation indices. Ecological Informatics, 79. https://doi.org/10.1016/j.ecoinf.2024.102461
  • 98. Sumi, T., Kantoush, S. A., & Saber, M. (n.d.). Natural Disaster Science and Mitigation Engineering: DPRI Reports Wadi Flash Floods Challenges and Advanced Approaches for Disaster Risk Reduction. Retrieved from http://www.springer.com/series/11773
  • 99. Sun, D., Chen, Y., Wang, S., Zhang, H., Qiu, Z., Mao, Z., & He, Y. (2021). Using Landsat 8 OLI data to differentiate Sargassum and Ulva prolifera blooms in the South Yellow Sea. International Journal of Applied Earth Observation and Geoinformation, 98. https://doi.org/10.1016/j.jag.2021.102302
  • 100. Talha, S., Maanan, M., Atika, H., & Rhinane, H. (2019). Prediction of flash flood susceptibility using fuzzy analytical hierarchy process (FAHP) algorithms and GIS: A study case of Guelmim Region in Southwestern of Morocco. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 42, 407–414. International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/ isprs-archives-XLII-4-W19-407-2019
  • 101. Tan, X. Z., Li, Y., Wu, X. X., Dai, C., Zhang, X. L., & Cai, Y. P. (2024a). Identification of the key driving factors of flash flood based on different feature selection techniques coupled with random forest method. Journal of Hydrology: Regional Studies, 51. https://doi.org/10.1016/j.ejrh.2023.101624
  • 102. Tan, X. Z., Li, Y., Wu, X. X., Dai, C., Zhang, X. L., & Cai, Y. P. (2024b). Identification of the key driving factors of flash flood based on different feature selection techniques coupled with random forest method. Journal of Hydrology: Regional Studies, 51. https://doi.org/10.1016/j.ejrh.2023.101624
  • 103. Tarekegn, T. H., Haile, A. T., Rientjes, T., Reggiani, P., & Alkema, D. (2010). Assessment of an ASTER-generated DEM for 2D hydrodynamic flood modeling. International Journal of Applied Earth Observation and Geoinformation, 12(6), 457–465. https://doi.org/10.1016/j.jag.2010.05.007
  • 104. Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2013). Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69–79. https:// doi.org/10.1016/j.jhydrol.2013.09.034
  • 105. Theilen-Willige, B., Charif, A., El Ouahidi, A., Chaibi, M., Ougougdal, M. A., & AitMalek, H. (2015). Flash floods in the guelmim area/southwest morocco–use of remote sensing and GIS-tools for the detection of flooding-prone areas. Geosciences (Switzerland), 5(2), 203–221. https://doi.org/10.3390/geosciences5020203
  • 106. Yao, L., Chen, L., & Wei, W. (2017). Exploring the linkage between urban flood risk and spatial patterns in small urbanized catchments of Beijing, China. International Journal of Environmental Research and Public Health, 14(3). https://doi.org/10.3390/ijerph14030239
  • 107. Zhang, D., & Zhou, G. (2016, August 17). Estimation of soil moisture from optical and thermal remote sensing: A review. Sensors (Switzerland). MDPI AG. https://doi.org/10.3390/s16081308
  • 108. Zhu, M., Xia, J., Jin, X., Yan, M., Cai, G., Yan, J., & Ning, G. (2018). Class weights random forest algorithm for processing class imbalanced medical data. IEEE Access, 6, 4641–4652. https://doi. org/10.1109/ACCESS.2018.2789428
  • 109. Zingaro, M., Refice, A., D’Addabbo, A., Hostache, R., Chini, M., & Capolongo, D. (2020). Experimental application of sediment flow connectivity index (SCI) in flood monitoring. Water (Switzerland), 12(7). https://doi.org/10.3390/w12071857
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d25ef49d-3188-4199-8d53-c22da10d47b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.