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Abstract:
The cognitive goal of this paper is to assess whether
marker‐less motion capture systems provide sufficient
data to recognize human postures in the side view. The
research goal is to develop a new posture classification
method that allows for analysing human activities using
data recorded by RGB‐D sensors. The method is insensi‐
tive to recorded activity duration and gives satisfactory
results for the sagittal plane. An improved competitive
Neural Network (cNN) was used. The method of pre‐
processing the data is first discussed. Then, a method for
classifying human postures is presented. Finally, classifi‐
cation quality using various distance metrics is assessed.
The data sets covering the selection of human activities
have been created. Postures typical for these activities
have been identified using the classifying neural network.
The classification quality obtained using the proposed
cNN network and two other popular neural networks
were compared. The results confirmed the advantage of
cNN network. The developedmethodmakes it possible to
recognize human postures by observingmovement in the
sagittal plane.

Keywords:Humanmotion, Posture classification, Human
activity, Competitive neural network, Classifier

1. Introduction
An activity (e.g., cooking, exploring, searching)

includes a sequence of actions. Kinematic features
extracted using human body models are used to
identify human actions. Knowing that actions are
their elementary components makes it possible to
anticipate human activities. At the lowest abstraction
level, human actions are recognised by identifying
the sequence of the motion primitives that compose
them, which can be addressed as the recognition of
the posture types. The motion primitive is the small
‘uniform’ fragment of motion associated with the spe‐
ci ic posture. In humanoid robots (and in the case of
a human), the movement is carried out at a certain
posture, and this does not mean that the robot (or
human) is ‘frozen’ in place.

The posture is associated with the features of
kinematic con iguration (e.g., elbow joint oriented ‘in’,
elbow joint oriented ‘out’, sharp or open‐angle is kept
in the knee joint, etc.). It does not mean that the angu‐
lar positions are constant; they undergo the changes
to such an extent that the speci ic posture is kept.

Many different criteria are used to recognise different
postures. The robots move to withhold some posture
(please see the robotics textbooks and classic publi‐
cations, e.g., [24, 25]). With such interpretation, the
activity, motion primitive, and posture are not very
distinct. If the activity is realised with one posture
or by more postures, it depends on the speci icity of
the activity and on the criterion or resolution used to
distinguish the postures.

Research on postures recognition is needed to syn‐
thesize the movement of humanoid robots. Operat‐
ing in an unstructured and unfamiliar environment,
these robots are expected to plan their actions using
the knowledge of the sequence of postures observed
in humans [29]. Posture recognition is also use‐
ful for recognizing and predicting human activities.
Some researchers use the identi ication of posture
sequences for this purpose [14]. In our other paper,
weproposed a semantic database for inferring current
activity from a sequence of actions [8, 9]. Presented
researchmay also be helpful in the diagnostic analysis
of human movement [22], including in detecting and
studying movement disorders.

1.1. Research Challenges and Contribution

One of the essential problems in the ield of
robotics supporting human activities is an automated
inference aboutwhat andhowahuman is doing.More‐
over, assisting robots should not stress a person with
their appearance, unusual equipment [29], or strange
posture. Hence, there is a need for registration and
analysis of human movement [10]. The latest tech‐
nological advances, including higher‐resolution depth
sensors and more ef icient methods of motion data
processing, make it easier to track the movement of
parts of the human body.

One of the goals of this work is to contribute to the
research on the motion planning of a humanoid robot
using the concept of learning by observation. The
robot is not expected to imitate themotion of a human,
but it will learn a sequence of key postures taken by
a human performing an activity. The robot will per‐
form these postures in its own way as the kinematics,
dynamics, and features of the actuating system are
different from a human. The activity will be created by
transformations between the postures that make the
sequence. We can assume greater ‘resolution’ of such
sequences with many postures, but then converting
them to robot postures requires considerable effort.
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On the other hand, using a small number of postures
will leave a lot of ‘freedom’ to the humanoid robot
motion planning system, which can lead to strange
(postures not typical for a human being) intermediate
postures. Therefore, it is logical to identify the key
postureswith the appropriate resolution. It is suitable
to choose those that are not too similar to each other.
In this work, posture is associatedwith an action. This
means that ongoing human activity can be anticipated
through sequences of identi ied postures. Therefore,
developing a method that can be used for such a pur‐
pose is the second goal of this paper.

This article proposes a novel approach to infer‐
ring human postures using a simpli ied model of the
human body and taking into account the data from the
RGB‐D sensors. Humanmovement is mainly observed
in the sagittal plane because, in this plane, the most
visible changes in posture aremadeduring basic activ‐
ities such as lifting, carrying, reaching, and collecting.
Finally, machine learning methods are used, consid‐
ering the positions of relevant human body points to
classify (to recognise) human postures [28].

The research contribution of this work is as
follows:
1) a body posture classi ication procedure using data

delivered from RGB‐D sensors was proposed,
2) following [13] this work introduces a modi ied

method to approximate the missing data and
reduce measurement errors. The normalization of
body coordinates in the data pre‐processing stage
was also done,

3) the most appropriate distance metrics were indi‐
cated for the shallow competitive neural network
(cNN) classifying human postures,

4) the developed classi ication method (leading to
posture recognition) was assessed, and compared
with the results obtained using other classifying
networks, and the advantages of this method were
demonstrated,

5) the datasets with observations of various human
activities in the sagittal view were created and
shared.
The remaining part of this paper presents the

contribution in detail. In Section 2, we discuss the
previous works in the area of recognising human
actions/activities. Section 3 describes the data
processing method; next, the proposed method
is introduced and tested, considering different
distance metrics. Section 4 presents the evaluation
of classi ication quality. Finally, section 6 gives the
conclusions and indicates the directions of future
work.

2. Related Work
The state‐of‐the‐art works on human postures

identi ication (which also means human action/activ‐
ity recognition) focus on relations between body
points position that de ine the body posture in each
moment. Rogez et al. [19] proposed an end‐to‐end
Localization‐Classi ication‐Regression Network (LCR

Net) for 2D and 3D pose estimation using video
images. The probabilistic method to predict human
movement trajectories was successfully investigated
by Dutta et al. [9] considering the needs of robot
helpmates.

Various works [2, 16] have sought to generate 3D
pose estimation from 2D keypoints. Hou et al. [12]
presented a multi‐channel network based on graph
convolutional networks for skeleton‐based action
recognition. In the work [5], the method for pos‐
tures recognition in the frontal plane using rather
time‐consuming coordinates transformation and fea‐
tures extraction was proposed. Recent advances in
the imaging techniques offered by high‐quality depth
sensors that perform well despite lighting and color
variations [17, 20] enable the easy capture of human
posture.

Lately, the shift from conventional statisticalmeth‐
ods to methods based on machine learning has also
been noticed. So, using machine learning tools makes
it possible to capture complex relationships within
recorded datasets [16]. Building the benchmark RGB‐
D data sets [11, 23], human body joints are often
registered in the frontal view using the multi‐camera
setup and arranged environments. One of the possible
approaches for postures recognition is the method of
applying the classifying neural networks. Apart from
differences in scale and level of abstraction, one of the
main dif iculties in using neural networks for recog‐
nising postures in a 3D space is the relatively limited
number of training samples, especially concerning the
data from the observations taken in the sagittal plane.
These shortcomings and the need for human assisting
robots were the motivations for undertaking the pre‐
sented work.

3. Materials and Methods
3.1. Recording Setup and Constitution of the New

Data‐set

The movement of actors performing complex
activities was recorded in the sagittal plane and at
an angle of 50∘ as shown in Figure 1. The created
data set (WUT‐22) covers the recording environments’
diversity, taking into account the cultural background.
Our dataset was recorded in two different environ‐
ments – the irst 10 activities were performed at War‐
saw University of Technology, Poland, and the next 10
activities were recorded at Waseda University, Japan,
respectively. For data recording, two modern ZED
RGB‐D cameraswith ZEDBody Tracking SDK software
or two Azure RGB‐D cameras with Azure Microsoft
Body Tracking SDK software were used [17].

The relationship between the data from the RGB‐
D image and the coordinates of the human body in
three‐dimensional spacewas established [27]. Twelve
healthy people aged 24 − 35 years, with a height of
151−187 cmandweight of65−85 kG, took part in the
study with their consent. Twenty activities were per‐
formed in a random order. For each involved person
performing a speci ic role, the activity was recorded
3 times, which, with a total of 4 people, gave a total
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Table 1. List of recorded activities and their parameters

Activity Description No. of objects No. of postures∗ No. of persons
1 Pick up a heavy object from the 2 4 1

loor and place it on the table
2 Pick up a light object from the 2 4 1

loor and place it on the table
3 Give the other person 3 6 2

a bottle of water
4 Give the other person 2 6 2

a cup of coffee
5 Take a heavy box from kitchen 1 4 1

shelf and place it on the table
6 Clean the wall 4 11 1

7 Pick up the phone 3 5 1
and answer the call

8 Take the book from trolley 5 4 1
and place it on the table

9 Drag the book cart 3 3 1
to another location

10 Push cart with objects near 3 3 1
the table and organise them

11 Pick up boxes from the wardrobe 3 12 1
and place them in order

12 Greet each other 1 9 2
in traditional Japanese style

13 Making a cup of tea 4 10 1
and sit on the chair

14 Bring the objects in a cart 4 11 1
and arrange them in order

15 Imitate food 3 5 1
preparation

16 Offer a cup of coffee 4 12 2
to the guest

17 Greet the guest and prepare 2 21 2
a cup of coffee for the guest

18 Organize objects with 5 25 2
the help of a colleague

19 Have a meal 3 41 2
together with a colleague

20 Offer a cup of coffee to the 4 21 2
guest and drink together

∗ indicated by cNN

of 12 records. The nine randomly selected series of
recordings of each activity performed by each per‐
son participating in the experiment were selected for
training and the remaining three for testing. Data for
two different viewing angles were recorded simulta‐
neously. Different camera arrangements were used
(see Fig. 2(b)) to test the resistance of the trained
neural network to scene variability. Activities included
both – short and long sequences of actions.

Both marker‐less motion recording sensors were
set to a resolution of 1920 × 1080 pixels, with a
recording speed of 15 frames per second and a 120∘
ield of view. The minimum depth range was 20 cm.
Besides the RGB‐D camera, each system includes an
accelerometer, gyroscope, barometer, magnetometer,
and temperature sensor; therefore, it can be used
for many purposes. Appropriate software has been

developed, enabling a simpli ied representation of the
human body. Out of the 34 (ZED) or 32 (Microsoft
Azure) human body points seen by the camera, 19
points were selected as essential for posture expres‐
sion (see Fig. 2(a)). Following [26], the sensors
were synchronized to collect motion data simultane‐
ously. Finally, the human motion database (WUT‐22)
was created and used to elaborate the classi ication
method.

Table 1 lists signi icant parameters involved dur‐
ing the data set creation, together with the number of
postures assigned after the neural network training.
Depending on the scenario, 1 to 5 objects were used
(see third column). The last column lists the number
of persons participating in the activity. The fourth col‐
umn gives the overall number of postures involved in
the activity, including those that are repeated several
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Cam 1
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Cam: ZED/Microsoft Azure

Figure 1. Camera setup in the laboratory environment
(top view)

times. The given number of postures is according to
the decision of the neural network. In the inal version,
the cNN had 20 outputs, meaning 20 postures were
expected. The column lists how often the postures
appeared in the sequence, which means the repeated
postures are counted. Therefore, if the recording is
longer and consists of repetitive actions, the number
of listed postures is greater.
3.2. Data Recording and Pre‐processing Stage

The initial data processing stage was carried out
using inspirations from the literature, e.g., [13]. Devel‐
oped software provides the ability to obtain 2D or
3D data describing the position of the human body
points. Software associated with used RGB‐D cam‐
eras has skeleton tracking systems that, based on
RGB‐D data, automatically provide coordinates of the
so‐called joints (points of the human body) following
a generally accepted standard. These coordinates are
the rawdata later processed, i.e. iltered and illedwith
missing points, as described below.

3D information used the (𝑥, 𝑦, 𝑧, 𝑐) data. The 𝑥, 𝑦,
𝑧 coordinates were transformed from the world ref‐
erence frame into the local reference frame attached
to the waist. The axes of this frame keep identical and
constant orientation as the world reference frame. All
positions were expressed in millimeters. Additionally,
𝑐 is the con idence score (natural number) ranging
⟨0, 100⟩ for ZED and ⟨0, 3⟩ for Kinect Azure. If 𝑐 falls
below the given thresholds, which means no detec‐
tion’ or ‘occlusion’, the joint information is considered
inaccurate and, therefore, approximated considering
its neighbouring data. The following parameters were
de ined:
𝐾 – number of frames in the video (it is equal to the

number of rows in the recorded CSV ile contain‐
ing the positions data),

𝐼 – number of measurement points (they are com‐
monly addressed as the joints) together with
their data. For ZED, it is 34 points, where each
point data are: 𝑥, 𝑦, 𝑧, 𝑐. For Azure, it is 32 points
with the 𝑥, 𝑦, 𝑧, 𝑐 data in each frame, whichmakes

one row the data ile, and as it wasmentioned 𝑐 is
the con idence score and 𝑐 ∈ {1, 2, … , 100} for the
ZED sensor, 𝑐 ∈ {0, 1, 2, 3} for the Azure sensor,

𝑐𝑡ℎ𝑟 – the threshold, for ZED 𝑐𝑡ℎ𝑟 = 80, and for Azure
𝑐𝑡ℎ𝑟 = 2,

𝑏𝑓 – before,𝑎𝑓 – after, the indexes indicating, for each
𝑖‐th joint accordingly, the closest frame with a
valid reading. These frames are the nearest neigh‐
bours before (𝑘𝑏𝑓) and after (𝑘𝑎𝑓), the 𝑘‐th frame
for which the reading is invalid.

Next, the joint illing process is applied. For clarity of
notation lets us denote by 𝑘𝑥𝑖 ,𝑘 𝑦𝑖 ,𝑘 𝑧𝑖 ,𝑘 𝑐𝑖 the data for
𝑖‐th joint from 𝑘‐th frame. The procedure is described
as Algorithm 1.

Algorithm 1 Filling the missing data
First frame:
𝑘 = 1, 𝑖 = {1, ...., 𝐼}.
For each 𝑖‐th joint for which 𝑘𝑐𝑖 ≤ 𝑐𝑡ℎ𝑟 ind 𝑘𝑎𝑓 for
which 𝑘𝑎𝑓𝑐𝑖 ≥ 𝑐𝑡ℎ𝑟
and substitute
(1𝑥𝑖 ,1 𝑦𝑖 ,1 𝑧𝑖 ,1 𝑐𝑖) = (𝑘𝑎𝑓𝑥𝑖 ,𝑘𝑎𝑓 𝑦𝑖 ,𝑘𝑎𝑓 𝑧𝑖 ,𝑘𝑎𝑓 𝑐𝑖)
Internal frames:
do
𝑘 = 𝑘 + 1, 𝑖 = {1, ...., 𝐼}
For each 𝑖‐th joint for which 𝑘𝑐𝑖 ≤ 𝑐𝑡ℎ𝑟 ind:
1) 𝑘𝑏𝑓 for which 𝑘𝑏𝑓𝑐𝑖 ≥ 𝑐𝑡ℎ𝑟 and
2) 𝑘𝑎𝑓 ≤ 𝐾 for which 𝑘𝑎𝑓𝑐𝑖 ≥ 𝑐𝑡ℎ𝑟 .
if 𝑘𝑎𝑓 ≠ 𝑁𝑢𝑙𝑙 then substitute
𝑘𝑎𝑖 =

𝑘𝑎𝑓𝑎𝑖−
𝑘𝑏𝑓𝑎𝑖

𝑘𝑎𝑓−𝑘𝑏𝑓
(𝑘 − 𝑘𝑏𝑓),

𝑎 = 𝑥, 𝑦, 𝑧 accordingly.
end if
if 𝑘𝑎𝑓 = 𝑁𝑢𝑙𝑙 (there is no frame in the remaining
part of the recording containing valid reading)
then substitute
(𝑘𝑥𝑖 ,𝑘 𝑦𝑖 ,𝑘 𝑧𝑖 ,𝑘 𝑐𝑖) = (𝑘𝑏𝑓𝑥𝑖 ,𝑘𝑏𝑓 𝑦𝑖 ,𝑘𝑏𝑓 𝑧𝑖 ,𝑘𝑏𝑓 𝑐𝑖)
end if
while (𝑘 ≤ 𝐾)
Last frame:
𝑘 = 𝐾, 𝑖 = {1, ....., 𝐼}.
For each 𝑖‐th joint for which 𝑘𝑐𝑖 ≤ 𝑐𝑡ℎ𝑟 ind 𝑘𝑏𝑓 for
which 𝑘𝑏𝑓𝑐𝑖 ≥ 𝑐𝑡ℎ𝑟 .
and substitute
(𝑘𝑥𝑖 ,𝑘 𝑦𝑖 ,𝑘 𝑧𝑖 ,𝑘 𝑐𝑖) = (𝑘𝑏𝑓𝑥𝑖 ,𝑘𝑏𝑓 𝑦𝑖 ,𝑘𝑏𝑓 𝑧𝑖 ,𝑘𝑏𝑓 𝑐𝑖)

After illing the missing data, the motion trajec‐
tories of the body points were iltered using the
Savitzky‐Golay [6] ilter, which smoothes the data
without distorting it. Because biological motion tra‐
jectories are naturally smooth, the use of such ilter‐
ing reduces the noise, causing the abrupt nature of
changes in recorded data.

Before feeding them to the arti icial neural net‐
work, the coordinates were normalized using the fol‐
lowing relation:

𝑘𝑎𝑛𝑟𝑚𝑖 =
𝑘𝑎𝑖 −𝑘 𝑎𝑚𝑖𝑛

𝑖
𝑎𝑚𝑎𝑥
𝑖 − 𝑎𝑚𝑖𝑛

𝑖
(1)
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Figure 2. Illustration of data points and applied cNN: (a) view of available points (left) and considered points (right), (b)
geometrical scenarios for registering human movement postures

Figure 3. Illustration of the proposed cNN architecture

Where 𝑎𝑚𝑖𝑛
𝑖 and 𝑎𝑚𝑎𝑥

𝑖 (𝑎 = 𝑥, 𝑦, 𝑧) denote the min‐
imum and maximum value of the appropriate coor‐
dinate of 𝑖‐th data point in the whole training set,
𝑘𝑎𝑛𝑟𝑚𝑖 ∈ ⟨0, 1⟩ is the normalized value.

3.3. Neural Network

This section describes the implemented neural
network by the authors, incorporating an adaptation
framework. Adaptation means the selection of the
most suitable distance measure. The measure con‐
cerns the distances between theweight and input data
vectors. Different distance metrics were considered.
According to the literature [1], iterative selection of
the most appropriate distance metrics is the clue to
adaptive learning. In this process, the quality of learn‐
ing is tested depending on different distance mea‐
sures. Such measures are inally applied in the cNN
that corresponds to the best outcome.

Used cNN is a single‐layer neural network inwhich
each output neuron is connected with all inputs. For
the purpose of cNN description, let us assume that
each input vector containing 𝐼3 = 𝐼 ⋅ 3 elements
(which are normalized coordinates) is denoted by
𝑘f = [ 𝑘𝑓1, 𝑘𝑓2, .., 𝑘𝑓𝑖 , .., 𝑘𝑓𝐼3 ], where 𝑘 = 1, ..., 𝐾 is the
frame index. The number of output neurons equals
𝑀 – the maximum number of postures plus one. The
additional output is left for unrecognised postures,
which means the postures which were not identi ied
(and counted) by the human expert. The output neu‐
rons compete with each other to become activated
after the input data vector is applied [1, 4]. The com‐
petition concerns the distance measure.

Lets us denote by w𝑚 the vector of weights
[ 𝑤1,𝑚 , 𝑤2,𝑚 , ......, 𝑤𝐼3,𝑚 ] associated with the 𝑚 − 𝑡ℎ
output neuron. For each output neuron, the distance
measure 𝑑𝑚(𝑘f,w𝑚) is calculated according to the
formulas described below. Let’s denote by 𝑘𝑤 thewin‐
ning neuron, and it is such a neuron for which the
distance measure 𝑑𝑘𝑤(..) between the input vector
and weights vector is the smallest:

𝑑𝑘𝑤 = min
𝑚=1,..,𝑀

𝑑𝑚(𝑘f,w𝑚) (2)

During the learning phase, the weights vector of the
winner is updated according to the learning rule:

w𝑘𝑤(𝑛 + 1) = w𝑘𝑤(𝑛) + 𝛼(𝑘f−w𝑘𝑤(𝑛)) (3)
𝑛 is the learning iteration (epoch) number, 𝛼 is the
learning rate. The rule is called ‘winner takes all’.

Knowing that the performance of the cNN
depends, among others, on the initialization method
of weights, the different initialization options were
tested (the weights equal to the random values, the
weights equal to the mean values of the training
data, and the weights initialized using the Gaussian
distribution). It was observed that the weights
initialized using Gaussian distribution offer the best
classi ication performance:

𝑤𝑖,𝑚 = 1
𝛼√2𝜋

exp(−(𝑟𝑑 − 𝜇𝑖)2
2𝜎2𝑖

) (4)
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where 𝑟𝑑 is a randomnumber from the range ⟨0, 1⟩, 𝜇𝑖
(𝑖 = 1, .., 𝐼3) is the mean value calculated taking into
account all normalized training data applied as the 𝑖 −
𝑡ℎ input (𝜇𝑖 = (∑𝐾

𝑘=1
𝑘𝑓𝑖)/𝐾), 𝜎𝑖 is the standard devi‐

ation of these data. After training, each output neuron
represents a cluster in the input dataset, meaning that
its weight vector makes the center of that cluster [21].

Figure 3 shows the general architecture of a cNN.
An input vector 𝑘f of normalized data is supplied
to each 𝑚‐th output neuron. Each neuron has its
weights vector w𝑚 selected in the training process,
as described. These weights are ‘frozen’ in the testing
phase. The distance 𝑑𝑚 between the current input
vector and the weights vector is calculated. This dis‐
tance is determined using the adopted metric. The
distances determined for all neurons are compared,
and the neuron with the smallest distance wins. The
transfer block (TF) generates outputs of 0 for all neu‐
rons except the winner, whose output is 1. We will
not give the formulas for all distance metrics tested
in this work as they are easily available. To focus the
attention, we give the formula for angular (Cosine)
distance, which was selected as the most appropriate,
as described later. Cosine distance has often been used
to classify high dimensional data. It is the dot product
of the vectors divided by the product of their lengths.
The Cosinemetric does not depend on themagnitudes
of the vectors but only on the angle between them.

The Cosine distance between 𝑘f and w𝑚 , is
de ined as:

𝑑𝑐𝑜𝑠 = 1 −
𝑘f ⋅w𝑚

‖𝑘f‖ ‖w𝑚‖
(5)

where w𝑚 denotes the weights vector of the 𝑚‐th
neuron of the competitive layer.

Avoiding overlapping clusters (which means the
bad grouping of inputs [18]), a rule of repulsion was
applied, ‘pushing’ the winner away from the rest of
the neurons. Thus, during the training, after updating
the weights of the winning neuron (neuron 𝑘𝑤), such
weights 𝑤𝑖,𝑚 are moved away from the winner 𝑘𝑤 for
which the absolute difference between 𝑤𝑖,𝑚 and the
weight𝑤𝑖,𝑘𝑤 is less than the de ined Δ threshold:

|𝑤𝑖,𝑚 −𝑤𝑖,𝑘𝑤 | < Δ (6)

Such modi ication prevents the clusters nearer
than the thresholdΔ, and themodi ication rule applies
the repulsion rate 𝛽, also called the conscience bias
learning rate. Denoting by𝑤𝑖,𝑟 , the neurons which are
within Δ range from the winner 𝑤𝑖,𝑘𝑤 , the following
formula is applied:

𝑤𝑖,𝑟(𝑛 + 1) = 𝑤𝑖,𝑟(𝑛) − 𝛽(𝑤𝑖,𝑘𝑤(𝑛) − 𝑤𝑖,𝑟(𝑛)) (7)

In our research, the performance of the cNN with
repulsion was compared with the conventional cNN.
Both networks were trained using the same distance
metric (in this case, Euclidean distance) for the same
input data set. As seen in Figure 4, the repulsion strat‐
egy offered better placement of the central points of
the clusters. These points (marked as green dots) are
well separated (Fig. 4(b)).

k3
k2

k0k1

(a) Traditional cNN

k3k2

k1

k0

(b) Proposed method (cNN + repulsion rule)

Figure 4. Distribution of the winning neurons for the
traditional cNN (upper part) and cNN with repulsion
(lower part), 𝑘0, 𝑘1, 𝑘2, 𝑘3 are denoting the centers
of each class for Activity 1

3.4. Implementation Details

The collected data concerned 32 or 34 points of
the human body, but the data from 19 points were
selected as a set suf icient to describe the body pos‐
ture. Given that each point has 3 coordinates, it brings
𝐼3 = 57 inputs to the neural network, normalized
with (1). Thus, each camera provides the input vec‐
tor kf = [ 𝑘𝑓1, 𝑘𝑓2, ..., 𝑘𝑓57] for each 𝑘th sample.
During the training, input vectors from both cameras
were supplied to the neural network, but only data
from the camera placed in the sagittal planewere used
for the tests. This arrangement made it possible to
observe the resilience of the neural network to limited
data.

According to the literature [18], the value of 𝛽, the
repulsion rate, should be less than 𝛼, the learning rate.

As it was already mentioned, the number of out‐
puts of the neural networkwas by one greater than the
number of expected postures. The postures ‘labelling’
were done after the neural network grouped the data.
This was performed in the learning phase, linking
the time interval of input data recording and the
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(a) Euclidean (b) Cosine

(c)Manhattan (d)Minkowski

Figure 5. The scatter plots showing the distribution of the winning neurons for different distance metrics for Activity 1

corresponding active output of NN with the skeleton
diagrams visible in the video. Thus, by observingwhat
posture is maintained in this time range, a label (in
other words, semantic meaning) was assigned to this
posture. In thisway, it was detectedwhich output indi‐
catedwhich posture, which allowed the recognition of
postures during the testing phase. Whether an action
is carried out with one or more postures depends on
the speci icity of the action and the resolution used
to distinguish the positions. Before training, a human
expert suggested the number of expected postures.
In the case of all 20 activities, this number was 19,
with the added 1 bearing in mind an unidenti ied
case. Therefore, the number of outputs of the neural
network was set to 20.

3.5. Repulsion Rule and Selection of theDistanceMetric

To illustrate the role of repulsion, only one activity
was considered, namely Activity 1 (pick up a heavy
object from the loor and place it on the table). In
this case, a cNN with four outputs was implemented
(for three different postures expected by the human
expert). Additional output was de ined to indicate one
more or an incorrectly recognized posture. The cNN
with Euclidean distance was trained.

The value 0.007 was selected as the learning rate
𝛼, and the repulsion rate 𝛽 was 0.0001. The number
of iterations during the training phase was limited to

100 after observing that the minimum distance error
remained essentially constant after 70−80 iterations.

Figure 4 illustrates the advantage of using the rule
of repulsion. The upper part of the igure shows the
distribution of winning neurons obtained in the train‐
ing phase for the neurons updated only with the for‐
mula (3), and the lower part shows the result obtained
using the rules of repulsion (6,7). Each dot represents
the winning neutron position obtained for each data
frame. As can be seen, repulsion prevents class over‐
lapping, and clusters are clearly visible. We focus on
the 𝑋𝑌 (sagittal) plane data in this and other igures.
This is the plane that best shows changes in pos‐
ture. However, the full set of coordinates (that means
𝑥, 𝑦, 𝑧) was used for training and testing.

After investigating the repulsion role, the most
appropriate distance metric was chosen. The widely
used Euclidean, Manhattan, Cosine, Minkowski, Ham-
ming, and Mahanalobis distances were applied in
the irst stage. Based on the results (not described
in this article), four best‐performing metrics were
selected for the next stage of investigations, namely:
(a)Euclideandistance, (b)Cosinedistance, (c)Manhat-
tan distance, and (d)Minkowski distance.

The results presented in Figure 5 in the form of
scatter plots show the distribution of winning neu‐
rons for each training epoch. The data is based on
training with Activity 1 only. Then, a set containing
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(a) Euclidean (b) Cosine

(c)Manhattan (d)Minkowski

Figure 6. The scatter plots showing the distribution of the winning neurons for different distance metrics for Activity 12.
Here 𝑝1 ‐ person 1, and 𝑝2 ‐ person 2, respectively

(a) Euclidean (b) Cosine

(c)Manhattan (d)Minkowski

Figure 7. The confusion matrix of proposed cNN taking into account the distance metrics for Activity 1
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Table 2. Performance evaluation: cNN, KNN, and uRF with different distance metrics/configurations

Method Distance ACC Pr Re F1-score

cNN Euclidean 89.6% 91.3% 89.6% 90.0%
Cosine 95.6% 97.0% 95.2% 95.9%
Manhattan 87.7% 91.0% 87.7% 89.0%
Minkowski 92.2% 94.6% 92.2% 94.0%

KNN [7] Euclidean 73.9% 75.3% 73.1% 72.0%
Cosine 93.8% 94.1% 93.3% 93.5%
Manhattan 80.8% 82.1% 80.4% 80.3%
Minkowski 82.2% 83.6% 81.2% 82.0%

uRF [15] tree‐16,0 78.8% 79.3% 78.5% 78.6%
depth‐8
tree‐200, 78.2% 78.9% 78.2% 79.1%
depth‐10
tree‐220, 80.06% 82.5% 81.9% 80.1%
depth‐8
tree‐250, 80.9% 81.01% 80.65% 80.9%
depth‐8

Figure 8. Computational efficiency of proposed cNN
considering the distance metrics

the results of nine recording sessions for Activity 1
and Activity 12 was used for training. The number of
outputs of the neural network was ive. Scatterplots
for this case are shown in Figure 6. In both examples,
the separationof clusters is obvious, and theoverlapof
winningneurons is small,which justi ies the validity of
all consideredmetrics. Results are shown for themost
signi icant 𝑋𝑌 (sagittal) plane.

In addition, Figure 7 shows the confusion matrix
obtained when testing cNNs trained using only Activ‐
ity 1. As seen, the results obtained for distances Cosine
andMinkowski are better than those for Euclidean and
Manhattan distances.

4. Experimental Evaluation
The inal evaluation included the comparison of

the proposed cNN with the results provided by the
other commonly used networks with unsupervised
training. For this evaluation, the data for all 20 activi‐
ties were used. The number of cNN outputs was set to
20. The trainingwas conducted using the data for nine

randomly selected recording sessions for each activity,
and the remaining three were used for testing.

First, the performances of cNN, KNN, and uRF
with four different distance metrics or con igurations
were compared. KNN is the Kohonen Neural Net‐
work [7], which belongs to a family of self‐organizing
feature maps that uses a competitive learning scheme
with an additional parameter – the neighbourhood
function. Therefore, the main parameters and struc‐
ture of the KNN were similar to the proposed cNN
(see the irst paragraph of section 3.4). uRF is the
unsupervised Random Forest [15]. According to [15],
the uRF construction process involves modifying the
Random Forest algorithm using k‐means clustering.
When building a modi ied Random Forest, the follow‐
ing parameters were used: (a) number of trees (n‐
estimators: 160, 200, 220, 250), (b) maximum depth
(max‐depth: 8, 10), (c)min‐samples‐ split (8), (d)min‐
samples‐leaf (16), (e) max‐leaf‐nodes (16), (f) max‐
features (sqrt), (g) criterion (entropy) respectively.

Referring to [9], a standard selectionof assessment
measures was used, namely accuracy (ACC), preci‐
sion (Pr), memory (Re), and F1 score (F measure).
A detailed description of the assessment measures
can be found in [9]. Accuracy is most often used in
classi ication problems. This measure, while intuitive,
can bemisleading in the case of a strongly unbalanced
number of samples in [3] classes. Fortunately, this
was not the case in the presented studies. Precision
and recall are not very useful when considered sepa‐
rately because precision does not distinguish between
true positives and true negatives, and recall does
not inform how many cases were incorrectly classi‐
ied. Taking into account the above, the F1‐score was
additionally used. It is the weighted harmonic mean
of precision and recall (F1‐score=2(Pr⋅Re)/(Pr+Re)).
Testing results obtained using the above three meth‐
ods and four different distance measures (if applica‐
ble), are given in Table 2. cNNwith Cosine distance has
a 95.6% accuracy.
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(a) frame 20 (b) frame 50 (c) frame 138

(d) frame 20 (e) frame 73 (f) frame 111

Figure 9. Sample image frames from both activity 1 and activity 12

(a) Classification for cNN𝑒𝑐𝑢𝑙 (b) Classification for cNN𝑐𝑜𝑠

(c) Classification for cNN𝑚𝑎ℎ (d) Classification for cNN𝑚𝑖𝑛

Figure 10. Stick diagrams of classification for Activity 1 (single person involved) are taken into account with four different
distance metrics and configurations

A similar result concernsKNNwithCosinedistance
for which the accuracy is 93.8%. The classi ication
quality is strong. The precision, recall, and F1 scores
are high for all the above networks. Maximum scores
obtained for each method are denoted by boldface

font in Table 2. These studies led to the indication
of the most appropriate distance metric. As Table 2
shows, the highest set of scores was obtained for cNN
with Cosine distance. The second highest result was
obtained for KNN with Cosine distance.
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(a) Classification for cNN𝑒𝑐𝑢𝑙 for person 1 (b) Classification for cNN𝑒𝑐𝑢𝑙 for person 2

(c) Classification for cNN𝑐𝑜𝑠 for person 1 (d) Classification for cNN𝑐𝑜𝑠 for person 2

(e) Classification for cNN𝑚𝑎𝑛 for person 1 (f) Classification for cNN𝑚𝑎𝑛 for person 2

(g) Classification for cNN𝑚𝑖𝑛 for person 1 (h) Classification for cNN𝑚𝑖𝑛 for person 2

Figure 11. Stick diagrams of classification for Activity 12 (2 people involved) are taken into account with four different
distance metrics and configurations
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Next, the computational ef iciency was examined
to illustrate the cNN features better. Fig 8 shows the
computational performanceobtained fordifferent dis‐
tance metrics during training and testing. As can be
seen in Figure 8, Manhattan distance gives the best
results in terms of computational performance, fol‐
lowed by Euclidean. The Cosine distance metric shows
the lowest ef iciency.

Finally, a qualitative assessment was made by dis‐
playing the classi ied postures using stick diagrams of
the human body. In this paper, the results obtained
only for one testing session and for selected activities
are presented. However, the results obtained for the
remaining two sessions are similar, and the results for
the remaining activities do not show excessive cases.
Figure 9 shows example images for Activity 1 and
Activity 12. The results illustrated by Figure 10 and
Figure 11 con irm that the proposed cNN classi ies the
postureswell. Each class is representedbyone color in
the stick diagrams.

cNN with distance Cosine andMinkowski correctly
classi ied all postures for Activity 1. While testing
using data for Acivity 12, cNN with distances Cosine
andMinkowski correctly classi iedmost postures. Only
oneposturewasmisclassi ied for person1whenusing
the Cosine distance measure. Two misclassi ied plus
one additional (unexpected by the expert) posture
occurred in the case ofMinkowski distance.

A single posture was misclassi ied for Euclidean
distance, and even more errors occurred for Man-
hattan distance for Activity 1. On the other hand,
for Activity 12, cNN with Euclidean distance had two
misclassi ied positions for person 1, and even more
for person 2. In the case of Manhattan distance, for
both Activity 1 and Activity 12, several postures were
assigned to unexpected or incorrect classes compared
to the human expert indications (Fig. 10(c)).

5. Discussion
It should be emphasized that the data collection

and processing method has been developed and veri‐
ied. Further data collection is in progress. The studies
described do not include data relevant to recognising
human‐human and human‐object relationships. Such
studies are planned for the future.

The described cNN network has been fully imple‐
mented, and the remaining neural networks have
been used as ready‐to‐use programs. The software
was developed in Python. Its libraries were also used,
including machine learning tools, e.g., scikit-learnwas
used to evaluate the results, and MatplotLib was used
for visualization. The calculations were performed on
a PC with an Intel Core‐i7 (2.8 GHz) processor and 64
GB of RAM.

Presented studies can be further extended. Only
two RGB‐D cameras collected the data, so using multi‐
camera data is a future research topic. Despite the
use of many data sets, the effectiveness of the devel‐
oped method of posture classi ication was veri ied
experimentally, taking into account still a limited set
of postures.

6. Conclusion

An improved version of a conventional cNN was
programmed and tested with an adaptive selection of
the most appropriate distance metric. Evaluations of
the proposed approach made using the test dataset
con irmed the good accuracy of the classi ication of
the developed cNN network (95.6%) and KNN net‐
work (93.8%) with the Cosine distance measure.

It was also shown that the use of RGB‐D sensors
for humanpostures recognition is a good optionwher‐
ever expensive professional motion capture systems
are not available.

Applied type of neural network is classic. The net‐
work is simple and allows a full understanding of how
it works. It is easy tomodify so that it effectivelymeets
the requirements. It was programmed from scratch
because the ready‐made libraries have many default
functions that are not always required and may delay
the work.

The proposed method allows for recognizing pos‐
tures in real‐time. The classi ication process was
tested in a simulated online mode using recorded test
data, and online classi ication was performed using a
pre‐trained neural network. The results were satisfac‐
tory, and the processing time was not noticeable to a
human observer.

The indication that the angular measure is the
most appropriate for the classi ication of postures
is a valuable contribution. Changes in the angular
positions of body parts cause changes in posture. In
this sense, a larger number of output neurons means
that postures with smaller angular differences will be
grouped into one group, and fewer neuronsmean that
positions with more different postures are clustered
together. By controlling the number of outputs neu‐
rons make, it is easy to in luence the ‘resolution’ in
postures recognition.
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