Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Radiation on a magnetohydrodynamic (MHD) boundary layer flow of a viscous fluid over an exponentially stretching sheet was considered together with its effects. The new technique of homotopy analysis method (nHAM) was used to obtain the convergent series expressions for velocity and temperature, where the governig system of partial differential equations was transformed into ordinary differential equations. The interpretation of these expressions is shown physically through graphs. We observed that the effects of the Prandtl and magnetic number act in opposite to each other on the temperature.
Rocznik
Tom
Strony
581--592
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
autor
- Department of Mathematics, University of Ilorin, Ilorin, Nigeria
autor
- Department of Mathematics, University of Ilorin, Ilorin, Nigeria
Bibliografia
- [1] Magyari E. and Keller B. (1999): Heat and transfer in the boundary layer on an exponentially stretching continuous surface. – J. Phys. D. Appl. Phys., vol.32, pp.577-585.
- [2] Sakiadis B.C. (1961): Boundary layer bahaviour on continous solid surface: I boundary layer equation for two dimensional and axisymmetric flow. – AIChE J., vol.7, pp.26-28.
- [3] Crane, L.J. (1970): Flow past a stretching plate. – Z. Angew. Math. Mech., vol.21, pp.645-647.
- [4] Carragher P. and Crane L.J. (1982): Heat transfer on a continuous streeting sheet. – Z. Angew. Math. Mech., vol.62, 564-573.
- [5] Partha M.K., Murthy P.V.S.N. and Rajasekhar G.P. (2005): Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface. – Heat Mass Transfer, vol.41, pp.360-366.
- [6] Hayat T. and Sajid M. (2008) Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet. – Int. J. Heat Mass Transfer, vol.50, pp.75-84.
- [7] Ganesan P. and Palani G. (2004): Finite difference analysis of unsteady natural convection MHD past an inclined plate with variable surface heat and mass flux. – Int. J. Heat Mass Transfer, vol.47, pp.4449-4457.
- [8] Seddeed M.A. (2002): Effect of radiation and variable viscousity on a MHD free convection flow past a semi-infinite flat plate with an aligned magnetic field in the case of unsteady flow. – Int. J. Heat Mass Transfer, vol.45, pp.931-935.
- [9] Anuar I. (2011): MHD boundary layer flow due to an exponentially stretching sheet with radiation effect. – Sains Malaysiana, vol.40, No.4, pp.391-395.
- [10] Aboeldahab E.M. and El Gendy M.S. (2002): Radiation effect on MHD free convective flow of a gas past a semi-infinite vertical plate with variable thermos-physical properties for high-temperature differences. – Can. J. Phys., vol.80, pp.1609-1619.
- [11] Cogley A.C., Vincenty W.G. and Gilles S.E. (1968): Differential approximation for radiative transfer in a nongrey gas near equilibrium. – AIAA J., vol.6, pp.551-553.
- [12] Rosseland S. (1936): Theoretical Astrophysics. – New York: Oxford University.
- [13] Siegel R. and Howell J.R. (1992): Thermal Radiation: Heat Transfer 3rd ed. – Washington DC: Hemisphere.
- [14] Sparrow E.M. and Cess R.D. (1978): Radiation Heat Transfer. – Washinton DC: Hemisphere.
- [15] Raptis A. (2004): Effect of thermal radiationon MHD flow. – Appl. Math. Comput., vol.32, pp.577-585.
- [16] Bataller R.C. (2008): Similarity solutions for boundary layer flow and heat transfer of a FENE-P fluid with thermal radiation. – Phys. Lett.A, vol.372, pp.2431-2439.
- [17] Liao S.J. (1992): The proposed Homotopy Analysis Technique for the Solution of Nonliear Problems. – Ph.D. Thesis.
- [18] Liao S.J. (2003): Beyond Perturbation:Introduction to Homotopy Analysis Method. – Chapman and Hall/CRC Press.
- [19] Bidin B. and Nazar R. (2009): Numerical solution of the boundary Layer Flow over an Exponentially Stretching Sheet with Thermal Radiation. Euro.J.Sci. 33(4) : 710 – 717.
- [20] Hany N.H. and Magdy A.E. (2012): A new technique of using homotopy analysis method for second order nonlinear differential equation. – Appl. Math. Comput., vol.219, pp.708-728.
- [21] Hany N.H. and Magdy A.E. (2010): A New Technique of Using Homotopy Analysis Method for Solving High-Order Nonlinear Differential Equations. – Wiley online Libery.
- [22] Hassan H.N. and El-Tawil M.A. (2012): A new technique of using homotopy analysis method for second order nonlinear differential equations. – Applied Mathematics and Computation, vol.219, No.2, pp.708-728.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d25cddcc-16cd-4f3d-9f63-37bcb65d97ff