PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transformation of Traditional Wastewater Treatment Methods into Advanced Oxidation Processes and the Role of Ozonation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Technology advancement improves the quality of life, however, it might also introduce new pollutants to the ecosystem, which needs to deal with for the goal of a sustainable ecosystem. Municipal and industrial wastewater has always been important in improving the quality of life while maintaining the sustainability of our planet simultaneously. The diversity of pollutants in wastewater requires more advanced and demanding treatment processes. The ozonation, as a crucial part of the advanced oxidation processes, is a superior oxidation method compared to traditional oxidation methods. After the recognition of ozone as GRAS (generally recognized as safe), its applications have diversified and is used currently for microbial inactivation, degradation of recalcitrant organic compounds, removal of a diverse range of micropollutants, solubilization and reduction of sludge, and removal of color and odor components in wastewaters treatment processes. However, some considerable challenges still exist towards its universal application, such as high ozone generation costs, diversity of pollutants, and formation of ozonation by-products, which still require further studies. The main theme of this review paper is the transformation of traditional oxidation methods into advanced oxidation processes and the role of ozonation in this regard, including its applications, by-products, and its comparison with the traditional oxidation methods and advanced oxidation processes.
Rocznik
Strony
173--189
Opis fizyczny
Bibliogr. 117 poz., rys., tab.
Twórcy
  • Faculty of Chemical and Food Technology, The Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
  • Faculty of Chemical and Food Technology, The Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
Bibliografia
  • 1. Allard, S., Nottle, C.E., Chan, A., Joll, C., von Gunten, U. 2013. Ozonation of iodide-containing waters: Selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs. Water Research, 47(6), 1953–1960. https://doi.org/10.1016/j.watres.2012.12.002
  • 2. Altmann, D., Schaar, H., Bartel, C., Schorkopf, D. L. P., Miller, I., Kreuzinger, N., Möstl, E., & Grillitsch, B. 2012. Impact of ozonation on ecotoxicity and endocrine activity of tertiary treated wastewater effluent. Water Research, 46(11), 3693–3702. https://doi.org/10.1016/j.watres.2012.04.017
  • 3. Amor, C., Marchao, L., Lucas, M., Peres, J. 2019. Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020205
  • 4. Andreozzi, R., Longo, G., Majone, M., Modesti, G. 1998. Integrated treatment of olive oil mill effluents (OME): Study of ozonation coupled with anaerobic digestion. Water Research, 32(8), 2357–2364. https://doi.org/10.1016/S0043-1354(97)00440-5
  • 5. Antoniou, M.G., Sichel, C., Andre, K., Andersen, H.R. 2017. Novel pre-treatments to control bromate formation during ozonation. Journal of Hazardous Materials, 323, 452–459. https://doi.org/10.1016/j.jhazmat.2016.03.041
  • 6. Battimelli, A., Loisel, D., Garcia-Bernet, D., Carrere, H., Delgenes, J.P. 2010. Combined ozone pretreatment and biological processes for removal of colored and biorefractory compounds in wastewater from molasses fermentation industries. Journal of Chemical Technology and Biotechnology, 85(7), 968–975. https://doi.org/10.1002/jctb.2388
  • 7. Beltran, J., Torregrosa, J., Dominguez, J.R., Garcia, J. 2000. Treatment of black-olive wastewaters by ozonation and aerobic biological degradation. Water Research, 34(14), 3515–3522. https://doi.org/10.1016/S0043-1354(00)00111-1
  • 8. Beltran, F.J. 2003. Ozone Reaction Kinetics for Water and Wastewater Systems. Lewis Publishers.
  • 9. Beltran, Fernando J., García-Araya, J.F., Frades, J., Álvarez, P., Gimeno, O. 1998. Effects of single and combined ozonation with hydrogen peroxide or UV radiation on the chemical degradation and biodegradability of debittering table olive industrial wastewaters. Water Research, 33(3), 723–732. https://doi.org/10.1016/S0043-1354(98)00239-5
  • 10. Bhattacharya, S., Abhishek, K., Samiksha, S., Sharma, P. 2023. Occurrence and transport of SARS-CoV-2 in wastewater streams and its detection and remediation by chemical-biological methods. Journal of Hazardous Materials Advances, 9, February 2023, 100221. https://doi.org/10.1016/j.hazadv.2022.100221
  • 11. Boyce, D.S., Sproul, O.J., Buck, C.E. 1981. The effect of bentonite clay on ozone disinfection of bacteria and viruses in water. Water Research, 15(6), 759–767. https://doi.org/10.1016/0043-1354(81)90169-X
  • 12. Broadwater, W.T., Hoehn, R.C., King, P.H. 1973. Sensitivity of Three Selected Bacterial Species to Ozone. Applied Microbiology, 26(3), 391–393.
  • 13. Bundschuh, M., Schulz, R. 2011. Ozonation of secondary treated wastewater reduces ecotoxicity to Gammarus fossarum (Crustacea; Amphipoda): Are loads of (micro)pollutants responsible? Water Research, 45(13), 3999–4007. https://doi.org/10.1016/j.watres.2011.05.007
  • 14. Chan, W.F., Larson, R.A. 1991. Formation of mutagens from the aqueous reactions of ozone and anilines. Water Research, 25(12), 1529–1538. https://doi.org/10.1016/0043-1354(91)90184-R
  • 15. Chavoshani, A., Hashemi, M., Amin, M.M., Ameta, S.C. 2020. Micropollutants and Challenges. In Micropollutants and Challenges, 1–33. https://doi.org/10.1016/B978-0-12-818612-1.00001-5
  • 16. Chen, S., Ren, T., Zhang, X., Zhou, Z., Huang, X., Zhnag, X. 2023. Efficient catalytic ozonation via Mn-loaded C-SiO2 Framework for advanced wastewater treatment: Reactive oxygen species evolution and catalytic mechanism. Science of the Total Environment, 858(3), 1 February 2023, 159447. https://doi.org/10.1016/j.scitotenv.2022.159447
  • 17. Chu, L.B., Xing, X.H., Yu, A.F., Zhou, Y.N., Sun, X.L., Jurcik, B. 2007. Enhanced ozonation of simulated dyestuff wastewater by microbubbles. Chemosphere, 68(10), 1854–1860. https://doi.org/10.1016/j.chemosphere.2007.03.014
  • 18. Chu, L., Yan, S., Xing, X.H., Sun, X., Jurcik, B. 2009. Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production. Water Research, 43(7), 1811–1822. https://doi.org/10.1016/j.watres.2009.02.012
  • 19. Ciardelli, G., Ranieri, N. 2001. The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation. Water Research, 35(2), 567–572. https://doi.org/10.1016/S0043-1354(00)00286-4
  • 20. Cuerda-correa, E.M., Alexandre-franco, M.F., Fern, C. 2020. Antibiotics from Water. An Overview. Water, 12, 1–50.
  • 21. Derco, J., Dudáš, J., Valičková, M., Šimovičová, K., Kecskés, J. 2015. Removal of micropollutants by ozone based processes. Chemical Engineering and Processing: Process Intensification, 94, 78–84. https://doi.org/10.1016/j.cep.2015.03.014
  • 22. Dytczak, M.A., Londry, K.L., Siegrist, H., Oleszkiewicz, J.A. 2007. Ozonation reduces sludge production and improves denitrification. Water Research, 41(3), 543–550. https://doi.org/10.1016/j.watres.2006.11.009
  • 23. Edelstein, P.H., Whittaker, R.E., Kreiling, R.L., Howell, C.L. 1982. Efficacy of ozone in eradication of Legionella pneumophila from hospital plumbing fixtures. Applied and Environmental Microbiology, 44(6), 1330–1334. https://doi.org/10.1128/aem.44.6.1330-1333.1982
  • 24. Eggen, R.I.L., Hollender, J., Joss, A., Schärer, M., Stamm, C. 2014. Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants. Environmental Science and Technology, 48(14), 7683–7689. https://doi.org/10.1021/es500907n
  • 25. El-taliawy, H., Ekblad, M., Nilsson, F., Hagman, M., Paxeus, N., Jönsson, K., Cimbritz, M., la Cour Jansen, J., & Bester, K. 2017. Ozonation efficiency in removing organic micro pollutants from wastewater with respect to hydraulic loading rates and different wastewaters. Chemical Engineering Journal, 325, 310–321. https://doi.org/10.1016/j.cej.2017.05.019
  • 26. Eryildiz, B., Ozgun, H., Ersahin, M., Koyuncu, I. 2022. Antiviral drugs against influenza: Treatment methods, environmental risk assessment and analytical determination. Journal of Environmental Management, 318, 115523. https://doi.org/10.1016/j.jenvman.2022.115523
  • 27. Fabbrocini, G., Triassi, M., Mauriello, M.C., Torre, G., Annunziata, M.C., de Vita, V., Pastore, F., D’Arco, V., Monfrecola, G. 2010. Epidemiology of skin cancer: Role of some environmental factors. Cancers, 2(4), 1980–1989. https://doi.org/10.3390/cancers2041980
  • 28. Falas, P., Juarez, R., Dell, L., Fransson, S., Karlsson, S., Cimbritz, M. 2022. Microbial bromate reduction following ozonation of bromide-rich wastewater in coastal areas. Science of the Total Environment, 841, 156694. https://doi.org/10.1016/j.scitotenv.2022.156694
  • 29. Fetner, R.H., Ingols, R.S. 1956. A comparison of the bactericidal activity of ozone and chlorine against Escherichia coli at 1degree. Journal of General Microbiology, 15(2), 381–385. https://doi.org/10.1099/00221287-15-2-381
  • 30. Finckh, S., Buchinger, S., Escher, B., Hollert, H., Konig, M., Krauss, M., Leekitratanapisan, W., Schiwy, S., Schlichting, R., Schuliakevich, A., Brack, W. 2022. Endocrine disrupting chemicals entering European rivers: Occurrence and adverse mixture effects in treated wastewater. Environment International, 170, 107608. https://doi.org/10.1016/j.envint.2022.107608
  • 31. Gehr, R., Wagner, M., Veerasubramanian, P., Payment, P. 2003. Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater. Water Research, 37(19), 4573–4586. https://doi.org/10.1016/S0043-1354(03)00394-4
  • 32. Gerrity, D., Pisarenko, A.N., Marti, E., Trenholm, R.A., Gerringer, F., Reungoat, J., Dickenson, E. 2015. Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation. Water Research, 72, 251–261. https://doi.org/10.1016/j.watres.2014.06.025
  • 33. Gijn, K., Zhao, Y., Balasubramaniam, A., Wilt, H., Carlucci, A., Langenhoff, A., Rijnaarts, H. 2022. The effect of organic matter fractions on micropollutant ozonation in wastewater effluents. Water Research, 222, 118933. https://doi.org/10.1016/j.watres.2022.118933
  • 34. Grguric, G., Trefry, J.H., Keaffaber, J.J. 1994. Ozonation products of bromine and chlorine in seawater aquaria. Water Research, 28(5), 1087–1094. https://doi.org/10.1016/0043-1354(94)90194-5
  • 35. Hassan, M.A., Nemr, A.E. 2017. Advanced oxidation processes for textile wastewater treatment. International Journal of Photochemistry and Photobiology, 2(3), 85–93. https://doi.org/10.1155/2013/683682
  • 36. Heebner, A., Abbassi, B. 2022. Electrolysis catalyzed ozonation for advanced wastewater treatment. Journal of Water Process Engineering, 46, 102638. https://doi.org/10.1016/j.jwpe.2022.102638
  • 37. Herbold, K., Flehmig, B., Botzenhart, K. 1989. Comparison of ozone inactivation, in flowing water, of hepatitis A virus, poliovirus 1, and indicator organisms. Applied and Environmental Microbiology, 55(11), 2949–2953. https://doi.org/10.1128/aem.55.11.2949-2953.1989
  • 38. History of Ozone. 2021. Https://Www.Solutionozone. Com/. https://www.solutionozone.com/ozone/history/
  • 39. Hofmann, R., Andrews, R.C. 2001. Ammoniacal bromamines: A review of their influence on bromate formation during ozonation. Water Research, 35(3), 599–604. https://doi.org/10.1016/S0043-1354(00)00319-5
  • 40. Houska, J., Manasfi, T., Gebhardt, I., Gunten, U. 2023. Ozonation of lake water and wastewater: Identification of carbonous and nitrogenous carbonyl-containing oxidation byproducts by non-target screening. Water Research, 232, 119484. https://doi.org/10.1016/j.watres.2022.119484
  • 41. Hubner, U., Seiwert, B., Reemtsma, T., Jekel, M. 2014. Ozonation products of carbamazepine and their removal from secondary effluents by soil aquifer treatment - Indications from column experiments. Water Research, 49(1), 34–43. https://doi.org/10.1016/j.watres.2013.11.016
  • 42. Hwang, B.K., Kim, J.H., Ahn, C.H., Lee, C.H., Song, J.Y., Ra, Y.H. 2010. Effect of disintegrated sludge recycling on membrane permeability in a membrane bioreactor combined with a turbulent jet flow ozone contactor. Water Research, 44(6), 1833–1840. https://doi.org/10.1016/j.watres.2009.12.009
  • 43. Hwang, Y., Matsuo, T., Hanaki, K., Suzuki, N. 1994. Removal of odorous compounds in wastewater by using activated carbon, ozonation and aerated biofilter. Water Research, 28(11), 2309–2319. https://doi.org/10.1016/0043-1354(94)90046-9
  • 44. Itzel, F., Baetz, N., Hohrenk, L.L., Gehrmann, L., Antakyali, D., Schmidt, T.C., Tuerk, J. 2020. Evaluation of a biological post-treatment after full-scale ozonation at a municipal wastewater treatment plant. Water Research, 170, 115316. https://doi.org/10.1016/j.watres.2019.115316
  • 45. Jin, X., Wu, C., Fu, L., Tian, X., Wang, P., Zhou, Y., Zuo, J. 2023. Development, dilemma and potential strategies for the application of nanocatalysts in wastewater catalytic ozonation: A review. Journal of Environmental Sciences, 124, 330–349. https://doi.org/10.1016/j.jes.2021.09.041
  • 46. Katzenelson, E., Biedermann, N. 1976. Disinfection of viruses in sewage by ozone. Water Research, 10(7), 629–631. https://doi.org/10.1016/0043-1354(76)90144-5
  • 47. Kim, J.G., Yousef, A.E., Dave, S. 1999. Application of ozone for enhancing the microbiological safety and quality of foods: A review. Journal of Food Protection, 62(9), 1071–1087. https://doi.org/10.4315/0362-028X-62.9.1071
  • 48. Knopp, G., Prasse, C., Ternes, T.A., Cornel, P. 2016. Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters. Water Research, 100, 580–592. https://doi.org/10.1016/j.watres.2016.04.069
  • 49. Kogelschatz, U. 2003. Dielectric-barrier Discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chemistry and Plasma Processing, 21(1), 1–46.
  • 50. Krishnan, S., Rawindran, H., Sinnathambi, C.M., Lim, J.W. 2017. Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants. IOP Conference Series: Materials Science and Engineering, 206(1). https://doi.org/10.1088/1757-899X/206/1/012089
  • 51. Lee, J.W., Cha, H.Y., Park, K.Y., Song, K.G., Ahn, K.H. 2005. Operational strategies for an activated sludge process in conjunction with ozone oxidation for zero excess sludge production during winter season. Water Research, 39(7), 1199–1204. https://doi.org/10.1016/j.watres.2004.10.004
  • 52. Lee, Y., Kovalova, L., McArdell, C.S., von Gunten, U. 2014. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Water Research, 64, 134–148. https://doi.org/10.1016/j.watres.2014.06.027
  • 53. Lester, Y., Mamane, H., Zucker, I., Avisar, D. 2013. Treating wastewater from a pharmaceutical formulation facility by biological process and ozone. Water Research, 47(13), 4349–4356. https://doi.org/10.1016/j.watres.2013.04.059
  • 54. Li, W., Lu, X., Xu, K., Qu, J., Qiang, Z. 2015. Cerium incorporated MCM-48 (Ce-MCM-48) as a catalyst to inhibit bromate formation during ozonation of bromide-containing water: Efficacy and mechanism. Water Research, 86, 2–8. https://doi.org/10.1016/j.watres.2015.05.052
  • 55. Lim, S., Shi, J., Gunten, U., McCurry, D. 2022. Ozonation of organic compounds in water and wastewater: A critical review. Water Research, 213, 118053. https://doi.org/10.1016/j.watres.2022.118053
  • 56. Lin, C.K., Tsai, T.Y., Liu, J.C., Chen, M.C. 2001. Enhanced biodegradation of petrochemical wastewater using ozonation and bac advanced treatment system. Water Research, 35(3), 699–704. https://doi.org/10.1016/S0043-1354(00)00254-2
  • 57. Lin, S.H., Lin, C.M. 1993. Treatment of textile waste effluents by ozonation and chemical coagulation. Water Research, 27(12), 1743–1748. https://doi.org/10.1016/0043-1354(93)90112-U
  • 58. Majumdar, S.B., Sprool, O.J. 1974. Review paper. Water Research, 8, 253–260.
  • 59. Manterola, G., Uriarte, I., Sancho, L. 2008. The effect of operational parameters of the process of sludge ozonation on the solubilisation of organic and nitrogenous compounds. Water Research, 42(12), 3191–3197. https://doi.org/10.1016/j.watres.2008.03.014
  • 60. McElroy, C.T., Fogal, P.F. 2008. Ozone: From discovery to protection. Atmosphere - Ocean, 46(1), 1–13. https://doi.org/10.3137/ao.460101
  • 61. Mecha, A.C., Onyango, M.S., Ochieng, A., Momba, M.N.B. 2016. Impact of ozonation in removing organic micro-pollutants in primary and secondary municipal wastewater: Effect of process parameters. Water Science and Technology, 74(3), 756–765. https://doi.org/10.2166/wst.2016.276
  • 62. Melin, E.S., Odegaard, H. 2000. The effect of biofilter loading rate on the removal of organic ozonation by-products. Water Research, 34(18), 4464–4476. https://doi.org/10.1016/S0043-1354(00)00204-9
  • 63. Meric, S., Selçuk, H., Belgiorno, V. 2005. Acute toxicity removal in textile finishing wastewater by Fenton’s oxidation, ozone and coagulation-flocculation processes. Water Research, 39(6), 1147–1153. https://doi.org/10.1016/j.watres.2004.12.021
  • 64. Michael, I., Andreou, R., Iacovou, M., Frontistis, Z., Hapeshi, E., Michael, C., & Fatta-Kassinos, D. (2017). On the capacity of ozonation to remove antimicrobial compounds, resistant bacteria and toxicity from urban wastewater effluents. Journal of Hazardous Materials, 323, 414–425. https://doi.org/10.1016/j.jhazmat.2016.02.023
  • 65. Misik, M., Knasmueller, S., Ferk, F., Cichna-Markl, M., Grummt, T., Schaar, H., & Kreuzinger, N. (2011). Impact of ozonation on the genotoxic activity of tertiary treated municipal wastewater. Water Research, 45(12), 3681–3691. https://doi.org/10.1016/j.watres.2011.04.015
  • 66. Moerman, W.H., Bamelis, D.R., Vergote, H.L., Van Holle, P.M., Houwen, F.P., Verstraete, W.H. 1994. Ozonation of activated sludge treated carbonization wastewater. Water Research, 28(8), 1791–1798. https://doi.org/10.1016/0043-1354(94)90252-6
  • 67. Nakada, N., Shinohara, H., Murata, A., Kiri, K., Managaki, S., Sato, N., Takada, H. 2007. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research, 41(19), 4373–4382. https://doi.org/10.1016/j.watres.2007.06.038
  • 68. Narkis, N., Schneider-Rotel, M. 1980. Evaluation of ozone induced biodegradability of wastewater treatment plant effluent. Water Research, 14(8), 929–939. https://doi.org/10.1016/0043-1354(80)90138-4
  • 69. Papa, M., Pedrazzani, R., Bertanza, G. 2013. How green are environmental technologies? A new approach for a global evaluation: The case of WWTP effluents ozonation. Water Research, 47(11), 3679–3687. https://doi.org/10.1016/j.watres.2013.04.015
  • 70. Park, S.-L., Moon, J.-D., Lee, S.-H., & Shin, S.-Y. (2006). Effective ozone generation utilizing a meshed-plate electrode in a dielectric-barrier discharge type ozone generator. Journal of Electrostatics, 64(5), 275–282. https://doi.org/10.1016/j.elstat.2005.06.007
  • 71. Petala, M., Samaras, P., Zouboulis, A., Kungolos, A., & Sakellaropoulos, G. P. (2008). Influence of ozonation on the in vitro mutagenic and toxic potential of secondary effluents. Water Research, 42(20), 4929–4940. https://doi.org/10.1016/j.watres.2008.09.018
  • 72. Priyadarshini, M., Das, I., Ghangrekar, M., Blaney, L. 2022. Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. Journal of Environmental Management, 316, 115295. https://doi.org/10.1016/j.jenvman.2022.115295
  • 73. Psaltou, S., Zouboulis, A. 2020. Catalytic Ozonation and Membrane Contactors—A Review Concerning Fouling Occurrence and Pollutant Removal. Water, 12, 2964. https://doi.org/10.3390/w12112964
  • 74. Rekhate, C.V., Srivastava, J.K. 2020. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- A review. Chemical Engineering Journal Advances, 3(June), 100031. https://doi.org/10.1016/j.ceja.2020.100031
  • 75. Remondino, M., Valdenassi, L. 2018. Different uses of ozone: Environmental and corporate sustainability. Literature review and case study. Sustainability (Switzerland), 10(12). https://doi.org/10.3390/su10124783
  • 76. Reungoat, J., Escher, B.I., Macova, M., Argaud, F.X., Gernjak, W., Keller, J. 2012. Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Research, 46(3), 863–872. https://doi.org/10.1016/j.watres.2011.11.064
  • 77. Ribeirinho-Soares, S., Moreira, N., Garca, C., Pereira, M., Silva, A., Nunes, O. 2022. Overgrowth control of potentially hazardous bacteria during storage of ozone treated wastewater through natural competition. Water Research, 209, February 2022, 117932. https://doi.org/10.1016/j.watres.2021.117932
  • 78. Rizvi, O., Ikhlaq, A., Ashar, U., Qazi, U., Akram, A., Kalim, I., Alazmi, A., Shamsah, S., Al-Sodani, K., Javaid, R., Qi, F. 2022. Application of poly aluminum chloride and alum as catalyst in catalytic ozonation process after coagulation for the treatment of textile wastewater. Journal of Environmental Management, 323, 115977. https://doi.org/10.1016/j.jenvman.2022.115977
  • 79. Rogowska, J., Cieszynska-Semenowicz, M., Ratajczyk, W., Wolska, L. 2020. Micropollutants in treated wastewater. Ambio, 49(2), 487–503. https://doi.org/10.1007/s13280-019-01219-5
  • 80. Rubin, M.B. 1964. A convenient apparatus for small scale ozonizations. J. Chem. Educ., 41(7), 388. https://doi.org/https://doi.org/10.1021/ed041p388
  • 81. Sabet, H., Moghaddam, S., Ehteshami, M. 2023. A comparative life cycle assessment (LCA) analysis of innovative methods employing cutting-edge technology to improve sludge reduction directly in wastewater handling units. Journal of Water Process Engineering, 51, 103354. https://doi.org/10.1016/j.jwpe.2022.103354
  • 82. Sarasa, J., Roche, M.P., Ormad, M.P., Gimeno, E., Puig, A., Ovelleiro, J.L. 1998. Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation. Water Research, 32(9), 2721–2727. https://doi.org/10.1016/S0043-1354(98)00030-X
  • 83. Sarasa, Judith, Cortés, S., Ormad, P., Gracia, R., Ovelleiro, J.L. 2002. Study of the aromatic byproducts formed from ozonation of anilines in aqueous solution. Water Research, 36(12), 3035–3044. https://doi.org/10.1016/S0043-1354(02)00003-9
  • 84. Schepper, W., Dries, J., Geuens, L., Blust, R. 2010. A kinetic model for multicomponent wastewater substrate removal by partial ozonation and subsequent biodegradation. Water Research, 44(18), 5488–5498. https://doi.org/10.1016/j.watres.2010.06.064
  • 85. Soares, O.S.G.P., Órfão, J.J.M., Portela, D., Vieira, A., Pereira, M.F.R. 2006. Ozonation of textile effluents and dye solutions under continuous operation: Influence of operating parameters. Journal of Hazardous Materials, 137(3), 1664–1673. https://doi.org/10.1016/j.jhazmat.2006.05.006
  • 86. Solis-Balbin, C., Sol, D., Laca, A., Laca, A., Diaz, M. 2023. Destruction and entrainment of microplastics in ozonation and wet oxidation processes. Journal of Water Process Engineering, 51, 103456. https://doi.org/10.1016/j.jwpe.2022.103456
  • 87. Soltermann, F., Abegglen, C., Tschui, M., Stahel, S., von Gunten, U. 2017. Options and limitations for bromate control during ozonation of wastewater. Water Research, 116, 76–85. https://doi.org/10.1016/j.watres.2017.02.026
  • 88. Sponholtz, D.J., Walters, M.A., Tung, J., BelBruno, J.J. 1999. A Simple and Efficient Ozone Generator. Journal of Chemical Education, 76(12), 1712–1713. https://doi.org/10.1021/ed076p1712
  • 89. Stalter, D., Magdeburg, A., Oehlmann, J. 2010. Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an in vivo test battery. Water Research, 44(8), 2610–2620. https://doi.org/10.1016/j.watres.2010.01.023
  • 90. Stalter, D., Magdeburg, A., Wagner, M., Oehlmann, J. 2011. Ozonation and activated carbon treatment of sewage effluents: Removal of endocrine activity and cytotoxicity. Water Research, 45(3), 1015–1024. https://doi.org/10.1016/j.watres.2010.10.008
  • 91. Sui, P., Nishimura, F., Nagare, H., Hidaka, T., Nakagawa, Y., Tsuno, H. 2011. Behavior of inorganic elements during sludge ozonation and their effects on sludge solubilization. Water Research, 45(5), 2029–2037. https://doi.org/10.1016/j.watres.2010.12.011
  • 92. Sumegova, L., Derco, J., Melicher, M. 2013. Influence of reaction conditions on the ozonation process. Acta Chimica Slovaca, 6(2), 168–172. https://doi.org/10.2478/acs-2013-0026
  • 93. Sun, H., Liu, H., Han, J., Zhang, X., Cheng, F., Liu, Y. (2018). Chemical cleaning-associated generation of dissolved organic matter and halogenated by products in ceramic MBR: Ozone versus hypochlorite. Water Research, 140, 243–250. https://doi.org/10.1016/j.watres.2018.04.050
  • 94. Tang, X., Wu, Q. Y., Zhao, X., Du, Y., Huang, H., Shi, X.L., Hu, H.Y. 2014. Transformation of antiestrogenic-activity related dissolved organic matter in secondary effluents during ozonation. Water Research, 48(1), 605–612. https://doi.org/10.1016/j.watres.2013.10.016
  • 95. Ternes, T.A., Stüber, J., Herrmann, N., McDowell, D., Ried, A., Kampmann, M., Teiser, B. 2003. Ozonation: A tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Research, 37(8), 1976–1982. https://doi.org/10.1016/S0043-1354(02)00570-5
  • 96. Thalmann, B., von Gunten, U., Kaegi, R. 2018. Ozonation of municipal wastewater effluent containing metal sulfides and metal complexes: Kinetics and mechanisms. Water Research, 134, 170–180. https://doi.org/10.1016/j.watres.2018.01.042
  • 97. Tripathi, S., Pathak, V., Tripathi, D.M., Tripathi, B.D. 2011. Application of ozone based treatments of secondary effluents. Bioresource Technology, 102(3), 2481–2486. https://doi.org/10.1016/j.biortech.2010.11.028
  • 98. Tyrrell, S.A., Rippey, S.R., Watkins, W.D. 1995. Inactivation of bacterial and viral indicators in secondary sewage effluents, using chlorine and ozone. Water Research, 29(11).
  • 99. Varga, L., Szigeti, J. 2016. Use of ozone in the dairy industry: A review. International Journal of Dairy Technology, 69(2), 157–168. https://doi.org/10.1111/1471-0307.12302
  • 100. Wang, J.L., Xu, L.J. 2012. Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 42(3), 251–325. https://doi.org/10.1080/10643389.2010.507698
  • 101. Wang, Y., Wang, N., Li, M., Bai, M., Wang, H. 2022. Potassium ferrate enhances ozone treatment of pharmaceutical wastewaters: Oxidation and catalysis. Journal of Water Process Engineering, 49, October 2022, 103055. https://doi.org/10.1016/j.jwpe.2022.103055
  • 102. Wang, Y.T. 1990. Methanogenic degradation of ozonation products of biorefractory or toxic aromatic compounds. Water Research, 24(2), 185–190. https://doi.org/10.1016/0043-1354(90)90101-B
  • 103. Warriner, R., Kostenbader, K.D., Cliver, D.O., Ku, W.C. 1985. Disinfection of advanced wastewater treatment effluent by chlorine, chlorine dioxide and ozone. Water Research, 19(12), 1515–1526.
  • 104. Wei, C., Zhang, F., Hu, Y., Feng, C., Wu, H. 2017. Ozonation in water treatment: The generation, basic properties of ozone and its practical application. Reviews in Chemical Engineering, 33(1), 49–89. https://doi.org/10.1515/revce-2016-0008
  • 105. Wei, Y., Van Houten, R.T., Borger, A.R., Eikelboom, D.H., Fan, Y. 2003. Minimization of excess sludge production for biological wastewater treatment. Water Research, 37(18), 4453–4467. https://doi.org/10.1016/S0043-1354(03)00441-X
  • 106. Wert, E.C., Rosario-Ortiz, F.L., Drury, D.D., Snyder, S.A. 2007. Formation of oxidation byproducts from ozonation of wastewater. Water Research, 41(7), 1481–1490. https://doi.org/10.1016/j.watres.2007.01.020
  • 107. Wu, J., Wang, T. 2001. Ozonation of aqueous azo dye in a semi-batch reactor. Water Research, 35(4), 1093–1099. https://doi.org/10.1016/S0043-1354(00)00330-4
  • 108. Yan, S.T., Chu, L.B., Xing, X.H., Yu, A.F., Sun, X.L., Jurcik, B. 2009. Analysis of the mechanism of sludge ozonation by a combination of biological and chemical approaches. Water Research, 43(1), 195–203. https://doi.org/10.1016/j.watres.2008.09.039
  • 109. Yang, J., Li, J., Dong, W., Ma, J., Yang, Y., Li, J., Yang, Z., Zhang, X., Gu, J., Xie, W., Cang, Y. 2017. Enhancement of bromate formation by pH depression during ozonation of bromide-containing water in the presence of hydroxylamine. Water Research, 109, 135–143. https://doi.org/10.1016/j.watres.2016.11.037
  • 110. Zhang, T., Chen, W., Ma, J., Qiang, Z. 2008. Minimizing bromate formation with cerium dioxide during ozonation of bromide-containing water. Water Research, 42(14), 3651–3658. https://doi.org/10.1016/j.watres.2008.05.021
  • 111. Zhang, X., Echigo, S., Lei, H., Smith, M.E., Minear, R.A., Talley, J.W. 2005. Effects of temperature and chemical addition on the formation of bromoorganic DBPs during ozonation. Water Research, 39(2–3), 423–435. https://doi.org/10.1016/j.watres.2004.10.007
  • 112. Zhang, X., Du, Y., Lu, Y., Wang, W., Wu, Q. 2022. Characteristics of the formation and toxicity index of nine newly identified brominated disinfection byproducts during wastewater ozonation. Science of the Total Environment, 824, 153924. https://doi.org/10.1016/j.scitotenv.2022.153924
  • 113. Zhou, H., Smith, D.W. 2000. Ozone mass transfer in water and wastewater treatment: Experimental observations using a 2D laser particle dynamics analyzer. Water Research, 34(3), 909–921. https://doi.org/10.1016/S0043-1354(99)00196-7
  • 114. Zhou, L., Wang, S., Li, Z., Cao, X., Liu, R., Yun, J. 2023. Simultaneously removal of phosphorous and COD for purification of organophosphorus wastewater by catalytic ozonation over CaO. Journal of Water Process Engineering, 51, 103397. https://doi.org/10.1016/j.jwpe.2022.103397
  • 115. Zietzschmann, F., Mitchell, R.L., Jekel, M. 2015. Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption. Water Research, 84, 153–160. https://doi.org/10.1016/j.watres.2015.07.031
  • 116. Zoumpouli, G.A., Siqueira Souza, F., Petrie, B., Féris, L.A., Kasprzyk-Hordern, B., Wenk, J. 2020. Simultaneous ozonation of 90 organic micropollutants including illicit drugs and their metabolites in different water matrices. Environmental Science: Water Research and Technology, 6(9), 2465–2478. https://doi.org/10.1039/d0ew00260g
  • 117. Zucker, I., Avisar, D., Mamane, H., Jekel, M., Hübner, U. 2016. Determination of oxidant exposure during ozonation of secondary effluent to predict contaminant removal. Water Research, 100, 508–516. https://doi.org/10.1016/j.watres.2016.05.049
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d25c6866-97da-477f-aba4-d286e1c473ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.