PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fate of swelling clay minerals during early diagenesis: a case study from Gdańsk Bay (Baltic Sea)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to recognize the early diagenetic transformations of clay minerals likely taking place in the brackish environment of Gdańsk Bay (Baltic Sea). The Vistula River loads and sediments of the Vistula delta front and prodelta were studied. The mineral compositions of the clay fractions were determined by X-ray diffractometry. The average layer charge (LC) of the expandable interlayers was determined using the O-D vibrational spectroscopy method. The major element content of the studied clays was determined by inductively coupled plasma optical emission spectrometry. The <0.2 μm clay fraction, separated from the river sediments, contained illite-smectite mixed layered minerals, rich in high-charge, dioctahedral smectite (Ilt-Sme), illite, and kaolinite. The same clay fraction, separated from the delta-front sediments, was also composed mainly of Ilt-Sme, illite, kaolinite, and hydroxy-interlayered minerals. The <0.2 μm clay fraction from the prodelta sediments was depleted in Ilt-Sme and enriched in illite and chlorite, relative to the clays from both the river and the delta-front sediments. The LCs (0.45 to 0.56 per formula unit) were higher for clays from the river and the delta front sediments, relative to the clays from the prodelta. The <0.2 μm clay fractions from the prodelta sediments were enriched in MgO, Fe2O3, and K2O, relative to the fine clay fraction from the river. The results indicated that the smectite component of Ilt-Sme, deposited by the Vistula in Gdańsk Bay, underwent chloritization and likely illitization. The chloritization most likely proceeded via formation of hydroxy-interlayers within the smectite. Illite-like minerals, formed at the expense of the smectite with high LC, due to selective adsorption and fixation of K+ from seawater.
Rocznik
Strony
305--322
Opis fizyczny
Bibliogr. 67 poz., map., rys., tab., wykr.
Twórcy
autor
  • Jagiellonian University, Institute of Geological Sciences, Gronostajowa 3a, 30-387 Kraków, Poland
  • Jagiellonian University, Institute of Geological Sciences, Gronostajowa 3a, 30-387 Kraków, Poland
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warsaw, Poland
  • Institute of Geological Sciences, Polish Academy of Sciences, Senacka 1, 31-002 Kraków, Poland
  • Jagiellonian University, Institute of Geological Sciences, Gronostajowa 3a, 30-387 Kraków, Poland
  • Jagiellonian University, Institute of Geological Sciences, Gronostajowa 3a, 30-387 Kraków, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland
  • Jagiellonian University, Institute of Geological Sciences, Gronostajowa 3a, 30-387 Kraków, Poland
Bibliografia
  • 1. Andrade, G. R. P., Cuadros, J., Partiti, C. S. M., Cohen, R. & Vidal-Torrado, P., 2018. Sequential mineral transformation from kaolinite to Fe-illite in two Brazilian mangrove soils. Geoderma, 309: 84-99.
  • 2. Baldermann, A., Warr, L. N., Grathoff, G. H. & Dietzel, M., 2013. The rate and mechanism of deep-sea glauconite formation at the Ivory Coast-Ghana Marginal Ridge. Clays and Clay Minerals, 61: 258-276.
  • 3. Barnhisel, R. I. & Bertsch, P. M., 1989. Chlorites and hydroxy-interlayered vermiculite and smectite. In: Dixon, J. & Weed, S. (eds), Minerals in Soil Environments. 2nd ed. Soils Science Society of America, Madison, pp. 729-788.
  • 4. Brown, A. & Pluskowski, A., 2011. Detecting the environmental impact of the Baltic Crusades on a late-medieval (13th-15th century) frontier landscape: Palynological analysis from Malbork Castle and hinterland, Northern Poland. Journal of Archaeological Science, 38: 1957-1966.
  • 5. Burst, J. F., 1958. Glauconite pellets: their mineral nature and applications to stratigraphic interpretations. AAPG Bulletin, 42: 310-327.
  • 6. Carroll, D. & Starkey, H., 1958. Effect of sea-water on clay minerals. Clays and Clay Minerals, 7: 80-101.
  • 7. Carstea, D. D., Harward, M. E. & Knox, E. G., 1970. Formation and stability of hydroxy-Mg interlayers in phyllosilicates. Clays and Clay Minerals, 18: 213-222.
  • 8. Chamley, H., 1989. Estuaries and deltas. In: Chamley, H. (ed.), Clay Sedimentology. Springer, Berlin, Heidelberg, pp. 97-116.
  • 9. Christidis, G. E. & Eberl, D. D., 2003. Determination of layer-charge characteristics of smectites. Clays and Clay Minerals, 51: 644-655.
  • 10. Cuadros, J., Andrade, G., Ferreira, T. O., de Moya Partiti, C. S., Cohen, R. & Vidal-Torrado, P., 2017. The mangrove reactor: Fast clay transformation and potassium sink. Applied Clay Science, 140: 50-58.
  • 11. Cyberska, B., 1990. Zasolenie wód Basenu Gdańskiego. In: Majewski, A. (ed.), Zatoka Gdańska. Wydawnictwa Geologiczne, Warszawa, pp. 237-255. [In Polish.]
  • 12. Czerwiński, S., Guzowski, P., Lamentowicz, M., Gałka, M., Karpińska-Kołaczek, M., Poniat, R., Łokas, E., Diaconu, A. C., Schwarzer J., Miecznik, M. & Kołaczek, P., 2021. Environmental implications of past socioeconomic events in Greater Poland during the last 1200 years. Synthesis of pal- eoecological and historical data. Quaternary Science Reviews, 259: 106902.
  • 13. Damrat, M., Zaborska, A. & Zajaczkowski, M., 2013. Sedimentation from suspension and sediment accumulation rate in the River Vistula prodelta, Gulf of Gdańsk (Baltic Sea). Oceanologia, 55: 937-950.
  • 14. Dietel, J., Gröger-Trampe, J., Bertmer, M., Kaufhold, S., Ufer, K. & Dohrmann, R., 2019. Crystal structure model development for soil clay minerals - I. Hydroxy-interlayered smectite (HIS) synthesized from bentonite. A multi-analytical study. Geoderma, 347: 135-149.
  • 15. Dunn, O. J., 1964. Multiple comparisons using rank sums. Technometrics, 6: 241-252.
  • 16. Eberl, D. D., 1984. Clay mineral formation and transformation in rocks and soil. Philosophical Transactions of the Royal Society of London, 311: 241-257.
  • 17. Emelyanov, E. M. & Stryuk, V., 2002. Distribution of suspended matter. In: Emelyanov, E. M. (ed.), Geology of the Gdańsk Basin, Baltic Sea. Yantarny Skaz. Russian Academy of Sciences - P. P. Shirshov Institute of Oceanology, Kaliningrad, pp. 78-81.
  • 18. Górnik, M., 2018. Long-term (1951-2015) changes in runoff along Poland's rivers Vistula and Bug. Przegląd Geograficzny, 90: 479-494.
  • 19. Griffin, J. J., Windom, H. & Goldberg, E. D., 1968. The distribution of clay minerals in the World Ocean. Deep Sea Research and Oceanographic Abstracts, 15: 433-459.
  • 20. Grim, R. E., 1953. Clay mineral investigation of sediments in the northern Gulf of Mexico. Clays and Clay Minerals, 2: 81-103.
  • 21. Hover, V. C., Walter, L. M. & Peacor, D. R., 2002. K uptake by modern estuarine sediments during early marine diagenesis, Mississippi Delta Plain, Louisiana, U.S.A. Journal of Sedimentary Research, 72: 775-792.
  • 22. Institute of Meteorology and Water Management - National Research Institute, 2022. https://klimat.imgw.pl/pl/climate-normals/ [In Polish, 2-Dec-2022.]
  • 23. Isson, T. T. & Planavsky, N. J., 2018. Reverse weathering as a longterm stabilizer of marine pH and planetary climate. Nature, 560(7719): 471-475.
  • 24. Isson,T. T., Planavsky, N. J., Coogan, L.A., Stewart, E. M.,Ague, J. J., Bolton, E. W., Zhang, S., McKenzie, N. R.& Kump, L. R., 2020. Evolution of the global carbon cycle and climate regulation on earth. Global Biogeochemical Cycles, 34: e2018GB006061.
  • 25. Jackson, M. L., 1969. Soil Chemical Analysis: Advanced Course. 2nd Ed. Madison, Wisconsin, 895 pp.
  • 26. Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F., 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15: 259-263.
  • 27. Kruskal, W. H. & Wallis, W. A., 1952. Use of ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260): 583-621.
  • 28. Kuligiewicz, A., Derkowski, A., Emmerich, K., Christidis, G. E., Tsiantos, C., Gionis, V. & Chryssikos, G. D., 2015a. Measuring the layer charge of dioctahedral smectite by O-D vibrational spectroscopy. Clays and Clay Minerals, 63: 443-456.
  • 29. Kuligiewicz, A., Derkowski, A., Szczerba, M., Gionis, V. & Chryssikos, G. D., 2015b. Revisiting the infrared spectrum of the water-smectite interface. Clays and Clay Minerals, 63: 15-29.
  • 30. Kuligiewicz, A., Derkowski, A., Środoń, J., Gionis, V. & Chryssikos, G. D., 2018. The charge of wettable illite-smectite surfaces measured with the O-D method. Applied Clay Science, 161: 354-363.
  • 31. Lanson, B., Ferrage, E., Hubert, F., Pręt, D., Mareschal, L., Turpault, M. P. & Ranger, J., 2015. Experimental aluminization of vermiculite interlayers: An X-ray diffraction perspective on crystal chemistry and structural mechanisms. Geoderma, 249-250: 28-39.
  • 32. Lindgreen, H., Drits, V. A., Sakharov, B. A., Jakobsen, H. J., Salyn, A. L., Dainyak, L. G. & Krayer, H., 2002. The structure and diagenetic transformation of illite-smectite and chlorite-smectite from North Sea Cretaceous-Tertiary chalk. Clay Minerals, 37: 429-450.
  • 33. Mackenzie, F. T. & Garrels, R. M., 1966. Chemical mass balance between rivers and oceans. American Journal of Science, 264: 507-525.
  • 34. Mackenzie, F. T. & Kump, L. R., 1995. Reverse weathering, clay mineral formation, and oceanic element cycles. Science, 270: 586-587.
  • 35. Majewski, W., 2013. General characteristics of the Vistula and its basin. Acta Energetica, 2: 6-15.
  • 36. Mehra, O. P. & Jackson, M. L., 1958. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7: 317-327.
  • 37. Meunier, A., 2007. Soil hydroxy-interlayered minerals: A reinterpretation of their crystallochemical properties. Clays and Clay Minerals, 55: 380-388.
  • 38. Michalopoulos, P. & Aller, R. C., 1995. Rapid clay mineral formation in Amazon delta sediments: Reverse weathering and oceanic elemental cycles. Science, 270(5236): 614-617.
  • 39. Mojski, E., 2005. Ziemie polskie w czwartorzędzie. Zarys morfogenetyczny. Polish Geological Institute - National Research Institute, Warszawa, 404 pp. [In Polish.]
  • 40. Moore, D. M. & Reynolds, R. C., Jr., 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. 2nd ed. Oxford University Press, New York, 400 pp.
  • 41. Nelson, B. W., 1958. Clay Mineralogy of the Bottom Sediments, Rappahannock River, Virginia. Clays and Clay Minerals, 7: 135-147.
  • 42. Nelson, B. W., 1962. Clay mineral diagenesis in the Rappahannock estuary: an explanation. Clays and Clay Minerals, 11: 210-210.
  • 43. Notebaert, B. & Verstraeten, G., 2010. Sensitivity of West and Central European river systems to environmental changes during the Holocene: A review. Earth-Sci Reviews, 103: 163-182.
  • 44. Odin, G. S. & Fullagar, P. D., 1988. Geological significance of the glaucony facies. In: Odin, G. S. (ed.), Developments in Sedimentology. Elsevier, Amsterdam, pp. 295-332.
  • 45. Powers, M. C., 1953. Clay diagenesis in the Chesapeake Bay area. Clays and Clay Minerals, 2: 68-80.
  • 46. Powers, M., 1957a. Adjustment of land derived clays to the marine environment. SEPM Journal of Sedimentary Research, 27: 355-372.
  • 47. Powers, M. C., 1957b. Adjustment of clays to chemical change and the concept of the equivalence level. Clays and Clay Minerals, 6: 309-326.
  • 48. Pugliese Andrade, G. R., de Azevedo, A. C., Cuadros, J., Souza, V. S., Correia Furquim, S. A., Kiyohara, P. K. & Vidal-Torrado, P., 2014. Transformation of kaolinite into smectite and iron-illite in Brazilian mangrove soils. Soil Science Society of America Journal, 78: 655-672.
  • 49. Rich, C. I., 1968. Hydroxy interlayers in expansible layer silicates. Clays and Clay Minerals, 16: 15-30.
  • 50. Russell, J. & Fraser, A., 1994. Infrared methods. In: Wilson, M. (ed.), Spectroscopic and Chemical Determinative Methods. Clay Mineralogy. Chapman and Hall, London, pp. 11-67.
  • 51. Schroeder, P., 2002. Infrared spectroscopy in clay science. Teaching Clay Science, 11: 181-206.
  • 52. Schroeder, P., 2016. Clays in the Critical Zone: An Introduction. Cambridge University Press, United Kingdom, Cambridge, 246 pp.
  • 53. Skiba, M., 2013. Evolution of dioctahedral vermiculite in geological environments - an experimental approach. Clays and Clay Minerals, 61: 290-302.
  • 54. Skiba, M., Skiba, S., Derkowski, A., Maj-Szeliga, K. & Dziubińska, B., 2018. Formation of NH4-illite-like phase at the expense of dioctahedral vermiculite in soil and diagenetic environments - an experimental approach. Clays and Clay Minerals, 66: 75-85.
  • 55. Środoń, J., 2006. Identification and quantitative analysis of clay minerals. In: Bergaya, F., Theng, B. K. G. & Lagaly, G. (eds), Handbook of Clay Science. 2nd ed. Developments in Clay Sciences, Vol. 1. Elsevier, Amsterdam, pp. 765-787.
  • 56. Stoch, L., Görlich, K. & Pieczka, F. B., 1980. Litologia i skład mineralny osadów z dna Basenu Gdańskiego. Kwartalnik Geologiczny, 24: 395-414. [In Polish, with English summary.]
  • 57. Tellier, K. E., Hluchy, M. M., Walker, J. R. & Reynolds, R. C., 1988. Application of high gradient magnetic separation (HGMS) to structural and compositional studies of clay mineral mixtures. Journal of Sedimentary Research, 58: 761-763.
  • 58. Uścinowicz, S. & Zachowicz, J., 1993a. Geological Map of the Baltic Sea Bottom, Gdańsk Deep sheet. Scale 1: 200 000. Polish Geological Institute - National Research Institute, Warsaw.
  • 59. Uścinowicz, S. & Zachowicz, J., 1993b. Geological Map of the Baltic Sea Bottom, Elbląg sheet. Scale 1: 200 000. Polish Geological Institute - National Research Institute, Warsaw.
  • 60. Uścinowicz, S. & Zachowicz, J., 1993c. Geological Map of the Baltic Sea Bottom, Gdańsk sheet. Scale 1: 200 000. Polish Geological Institute - National Research Institute, Warsaw.
  • 61. Uścinowicz, S., Ebbing, J., Laban, C. & Zachowicz, J., 1998. Recent muds of the Gulf of Gdańsk. Baltica, 11: 25-32.
  • 62. Velde, B. & Church, T., 1999. Rapid clay transformations in Delaware salt marshes. Applied Geochemistry, 14: 559-568.
  • 63. Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M. & Widmann, M., 2008. Midto Late Holocene climate change: an overview. Quaternary Science Reviews, 27: 1791-828.
  • 64. Weaver, C. E., 1989. Clays, Muds, and Shales. Elsevier, Amsterdam, 820 pp.
  • 65. Whitehouse, U. G. & McCarter, R. S., 1956. Diagenetic modification of clay mineral types in artificial sea water. Clays and Clay Minerals, 5: 81-119.
  • 66. Wiewióra, A., Giresse, P., Petit, S. & Wilamowski, A., 2001. A deep-water glauconitization process on the Ivory Coast-Ghana Marginal Ridge (ODP Site 959): Determination of Fe3+-rich montmorillonite in green grains. Clays and Clay Minerals, 49: 540-558.
  • 67. Wilson, M. J., 1999. The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34: 7-25.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d256bd1e-86c4-4921-b88f-c5b20cacfd0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.