PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the Finite Elements Method for computer simulation of properties of surface layers

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The work presents the application of the Finite Elements Method in a computer simulation whose aim is to determine the properties of PVD and CVD coatings on various substrates and to optimise parameters of a laser surface treatment process of surface layers of tool steels. Design/methodology/approach: The article discusses the application of the finite elements method for simulating the determination of stresses and microhardness of Ti+TiN, Ti+Ti(CN) and Ti+TiC coatings obtained in a magnetron PVD process on a substrate of sinter high-speed steel, of Ti/Ti(C,N)/CrN, Ti/Ti(C, N)/(Ti, Al)N, Ti/(Ti, Si)N/(Ti, Si)N, Cr/ CrN/CrN, Cr/CrN/TiN and Ti/DLC/DLC coatings obtained in a PVD and CVD process on magnesium alloys, of graded and monolayer coatings (Ti, Al)N, Ti(C,N) produced with the PVD arc technique on a substrate of sintered carbides, cermets and oxide tool ceramics and tool steel remelted and alloyed with a high-performance diode laser (HPDL). Modeling of stresses was performed with the help of finite element method in ANSYS and MARC environment, and the experimental values of stresses were determined based on the sin2Ψ. Findings: The models presented satisfy the assumed criteria, and they can be applied for the determination of properties of surface layers and optimisation of PVD and CVD processes and laser alloying and remelting. The results of a computer simulation correlate with experimental results. The models developed allow to largely eliminate costly, timeconsuming and specialist experiments which have to be done during investigations for the benefit of computer simulations. Research limitations/implications: To be able to assess the possibility of application of surface layers, a computer simulation of other properties of coatings has to be additionally carried out, and a strength analysis has to be made of other coatings coated onto various substrate materials. Originality/value: value Computer simulation and modelling is an interdisciplinary field necessary for the development of science and technology, enabling to perform direct visualisation of properties, which cannot be identified in experimental observations. The purpose of computer simulation and modelling is to improve the ability to predict results and to optimise solutions.
Rocznik
Strony
56--85
Opis fizyczny
Bibliogr. 106 poz.
Twórcy
autor
  • Division of Materials Processing Technology and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] M. Flasihski, Introduction to artificial intelligence, PWN, Warsaw, 2011.
  • [2] J. Arabas, Lecture on evolutionary algorithms, WNT, Warsaw, 2001.
  • [3] J. Mulawka, Expert Systems, WNT, Warsaw, 1996.
  • [4] M. Sroka, A. Zieliński, Matrix replica method and artificial neural networks as a component of the evaluation of materials for power plants, Archives of Materials Science and Engineering 58/2 (2012) 130¬136.
  • [5] A. Zieliński, J. Dobrzański, M. Sroka, Changes in the structure of VM12 steel after being exposed to creep conditions, Archives of Materials Science and Engineering 49/2 (2011) 103-111.
  • [6] J. Dobrzański, M. Sroka, Computer aided classification of internal damages the chromium-molybdenum steels after creep service, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007)143-146.
  • [7] A. Zieliński, J. Dobrzański, G. Golański, M. Sroka, Computer-assisted analysis of changes in the microstructure of P92 steel after exposure at elevated temperature, Archives of Materials Science and Engineering 65/2 (2014) 77-86.
  • [8] M. Sroka, A. Zieliński, Computer assisted evaluation of degree of exhaustion of T/P23 (2.25Cr-0.3Mo- 1.6W-V-Nb) steel after long-term annealing, Archives of Materials Science and Engineering 64/2 (2013) 205-212.
  • [9] V. Tut, A. Tulcan, C.Cosma, I. Serban, Application of CAD/CAM/FEA, reverse engineering and rapid prototyping in manufacturing industry, International Journal of Mechanics 4/4 (2010) 79-86.
  • [10] R.L. Wysack, Effective CAD Management: a Manager’s Guide, CAD/CAM Publishing, 1985.
  • [11] A. Śliwa, M. Bonek, Application of Finite Element Method for definition of the relationship between properties of laser alloyed steel surface layer, Metalurgija 56/1-2 (2017) 223-225.
  • [12] A. Śliwa, J. Mikuła, K. Gołombek, T. Tański, M. Bonek, W. Kwaśny, Z. Brytan, Prediction of the properties of PVD/CVD coatings with the use of FEM analysis, Applied Surface Science 388 (2016) 281¬287.
  • [13] A. Śliwa, W. Kwaśny, W. Sitek, M. Bonek, Computer simulation of the relationship between selected properties of PVD coatings, Archives of Metallurgy and Materials 61/2 (2016) 481-484.
  • [14] A. Śliwa, J. Mikuła, K. Gołombek, W. Kwaśny, D. Pakula, Internal stresses in PVD coated tool composites, Archives of Metallurgy and Materials 61/3 (2016) 1371-1378.
  • [15] M. Bonek, A. Śliwa, J. Mikuła, Computer simulation of the relationship between selected properties of laser remelted tool steel surface layer, Applied Surface Science 388 (2016) 174-179.
  • [16] L. Żukowska, A. Śliwa, J. Mikuła, M. Bonek, W. Kwaśny, M. Sroka, D. Pakuła, Finite element predictions for the internal stresses of (Ti,Al)N coatings, Archives of Metallurgy and Materials 61/1 (2016) 149-152.
  • [17] T. Tański, K. Labisz, K. Lukaszkowicz, A. Śliwa, K. Golombek, Characterisation and properties of hybrid coatings deposited onto magnesium alloys, Surface Engineering 30/12 (2014) 927-932.
  • [18] A. Śliwa, W. Kwaśny, L.A. Dobrzański, R. Dziwis, Properties determination of two-layer coatings deposited by PVD techniques using computer simulation, Archives of Materials Science and Engineering 63/2 (2013) 68-74.
  • [19] A. Śliwa, T. Tański, R. Dziwis, W. Kwaśny, M. Pancielejko, Simulation of internal stresses coatings deposited onto magnesium alloys by use of FEM, Archives of Materials Science and Engineering 64/1 (2013)28-33.
  • [20] A. Śliwa, L.A. Dobrzański, W. Kwaśny, M. Staszuk, Simulation of the microhardness and internal stresses measurement of PVD coatings by use of FEM, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 684-691; Archives of Computational Materials Science and Surface Engineering 2/4 (2010) 213-220.
  • [21] A. Śliwa, W. Kwaśny, M. Sroka, R. Dziwis, Computer simulation of aluminium stamping process, Metalurgija 56/3-4 (2017) 422-424.
  • [22] M. Sroka, A. Zieliński, A. Hemas, Z. Kania, R. Rozmus, T. Tański, A. Śliwa, The effect of long-term impact of elevated temperature on changes in the microstructure of Inconel 740H alloy, Metalurgija 56/3-4 (2017) 333-336.
  • [23] A. Zieliński, M. Sroka, M. Miczka, A. Śliwa, Forecasting the particle diameter size distribution in P92 (X10CrWMoVNb9-2) steel after long-term ageing at 600 and 650oC, Archives of Metallurgy and Materials 61/2 (2016) 753-760.
  • [24] D. Pakuła, M. Staszuk, K. Golombek, A. Śliwa, Structure and properties of the tool ceramics with hard wear resistant coatings, Archives of Metallurgy and Materials 61/3 (2016) 919-924.
  • [25] L.A. Dobrzański, M. Staszuk, A. Śliwa, M. Pancialejko, Structure and properties PVD and CVD coatings deposited onto edges of sintered cutting tools, Archives of Metallurgy and Materials 55/1 (2010) 187-193.
  • [26] W. Kwaśny, A. Śliwa, J. Mikuła, T. Tański, Computer simulation of the influence of Ti interlayer implementation on coatings properties, Materials Engineering 36/2 (2015) 91-95.
  • [27] A. Śliwa, Properties determination of PVD coatings using computer simulation, in: Y. Shalapko, Z. Wyszkowska, J. Musial, O. Paraska (Eds.), Study of problems in modem science: new technologies in engineering, advanced management, efficiency of social institutions, Iss. 2., Khmelnytsky: Khmelnytsky National University, 2015, 123-130.
  • [28] A. Śliwa, W. Kwaśny, L.A. Dobrzański, Computer simulation of stresses in coatings obtained in the PVD process, Materials Engineering 31/3 (2010) 732-734.
  • [29] L.A. Dobrzański, W. Kwaśny, B. Dołżańska, A. Śliwa, K. Golombek, G. Nowa, The computer simulation of internal stresses of tool gradient materials reinforced with the WC-Co, Archives of Materials Science and Engineering 57/1 (2012) 38-44.
  • [30] A. Śliwa, L.A. Dobrzański, W. Kwaśny, M. Tisza, L. Toth, S. Szabolcs, S. Pudmer, Innovative method of properties determination for tools covered with PVD coatings using computer simulation, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 375-382.
  • [31] L.A. Dobrzański, L. Żukowska, A. Śliwa, J. Mikuła, FEM modelling of internal stresses in advanced PVD coatings, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 259-268.
  • [32] J. Weszka, M. Szindler, A. Śliwa, B. Hajduk, J. Jurusik, Reconstruction of thin films polyazomethine based on microscopic images, Archives of Materials Science and Engineering 48/1 (2011) 40-48.
  • [33] A. Śliwa, J. Mikuła, L.A. Dobrzański, FEM application for modelling of PVD coatings properties, Journal of Achievements in Materials and Manufacturing Engineering 41/1-2 (2010) 164-171.
  • [34] L.A. Dobrzański, A. Śliwa, L. Żukowska, J. Mikuła, K. Golombek, Structure and mechanical properties of PVD coatings for tool materials, Journal of Achievements in Materials and Manufacturing Engineering 42/1-2 (2010) 33-41.
  • [35] A. Śliwa, J. Mikuła, K. Golombek, L.A. Dobrzański, FEM modelling of internal stresses in PVD coated FGM, Journal of Achievements in Materials and Manufacturing Engineering 36/1 (2009) 71-78; Archives of Computational Materials Science and Surface Engineering 2/1 (2010) 16-23.
  • [36] A. Śliwa, G. Matula, L.A. Dobrzański, Finite Element Method application for structure determining of powder injection moulding samples, Archives of Computational Materials Science and Surface Engineering 2/3 (2010) 157-164.
  • [37] A. Śliwa, G. Matula, L.A. Dobrzański, Finite Element Method application for determining feedstock distribution during powder injection molding, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 584-591.
  • [38] L.A. Dobrzański, A. Śliwa, T. Tański, Finite Element Method application for modelling of mechanical properties, Archives of Computational Materials Science and Surface Engineering 1/1 (2009) 25-28.
  • [39] A. Śliwa, L.A. Dobrzański, W. Kwaśny, W. Sitek, Finite element method application for modeling of PVD coatings properties, Journal of Achievements in Materials and Manufacturing Engineering 27/2 (2008) 171-174.
  • [40] A. Śliwa, L.A. Dobrzański, W. Kwaśny, W. Sitek, The computer simulation of internal stresses on the PVD coatings, Archives of Computational Materials Science and Surface Engineering 1/3 (2009) 183-188.
  • [41] L.A. Dobrzański, A. Śliwa, W. Kwaśny, The computer simulation of internal stresses in coatings obtained by the PVD process, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 355-358.
  • [42] L.A. Dobrzański, A. Śliwa, W. Kwaśny, The computer simulation of stresses in the Ti+Ti(CxNi_x) coatings obtained in the PVD process, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 155-158.
  • [43] L.A. Dobrzański, M. Staszuk, A. Śliwa, Simulation of the microhardness measurement of PVD coatings by use of FEM, Journal of Achievements in Materials and Manufacturing Engineering 18/1-2 (2006) 279¬282.
  • [44] L.A. Dobrzański, A. Śliwa, W. Kwaśny, W. Sitek, The computer simulation of stresses in the Ti+TiC coatings obtained in the PVD process, Journal of Achievements in Materials and Manufacturing Engineering 17/1-2 (2006) 241-244.
  • [45] L.A. Dobrzański, A. Śliwa, W. Sitek, W. Kwaśny, Finite Element Method application for determining of critical compressive stresses located on the PVD coating, Materials Engineering 27/3 (2006) 376¬379.
  • [46] L.A. Dobrzański, A. Śliwa, W. Sitek, W. Kwaśny, Application of Finite Element Method to determining the properties of PVD coatings, Materials Engineering 27/5 (2006) 928-931.
  • [47] L.A. Dobrzański, W. Kwaśny, Z. Brytan, R. Shishkov, A. Tomov, Structure and properties of the Ti+Ti(C,N) coatings obtained in the PVD process on sintered high speed steel, Journal of Materials Processing Technology 157-158 (2004) 312-316.
  • [48] L.A. Dobrzański, D. Pakula, Structure and properties of the wear resistant coatings obtained in the PVD and CVD processes on tool ceramics, Materials Science Forum 513 (2006) 119-133.
  • [49] L.A. Dobrzański, K. Golombek, Structure and properties of the cutting tools made from cemented carbides and cermets with the TiN + mono-, gradient- or multi(Ti, Al, Si)N + TiN nanocrystalline coatings, Journal of Materials Processing Technology 164-165 (2005) 805-815.
  • [50] L.A. Dobrzański, J. Mikuła, The structure and functional properties of PVD and CVD coated AI2O3 + Zr02 oxide tool ceramics, Journal of Materials Processing Technology 167/2-3 (2005) 438-446.
  • [51] K.-D. Bouzakis, G. Skordaris, S. Gerardis, G. Katirtzoglou, S. Makrimallakis, M. Pappa, E. Lill, R. M’Saoubi, Ambient and elevated temperature properties of TiN, TiAIN and TiSiN PVD films and their impact on the cutting performance of coated carbide tools, Surface and Coatings Technology 204/6-7 (2009) 1061 1065, doi: https://doi.Org/10.1016/j.surfcoat.2009.07.001
  • [52] M. Kupczyk, Technological and functional quality of cutting tool flanks with the anti wear coatings, Poznan, 1997 (in Polish).
  • [53] Z. Dyląg, A. Jakubowicz, Z. Orłoś, Strength of materials, WNT, Warsaw, 1996.
  • [54] T. Burakowski, T. Wierzchoń, Engineering of metal surface, WNT, Warsaw, 1995.
  • [55] S. Łączka, Introduction to the ANSYS Finite element system, Cracow Technical University Press, Cracow, 1999.
  • [56] L.A. Dobrzański, A. Śliwa, W. Sitek, Finite element method application for modeling of PVD coatings properties, Proceedings of the 5th International Surface Engineering Conference, 2006, 26-29.
  • [57] L.A. Dobrzański, A. Śliwa, W. Kwaśny, Employment of the finite element method for determining stresses in coatings obtained on high-speed steel with the PVD process, Journal of Materials Processing Technology 164-165 (2005) 1192-1196.
  • [58] L.A. Dobrzański, M. Staszuk, M. Pawlyta, W. Kwaśny, M. Pancielejko, Characteristics of Ti (C, N) and (Ti, Zr) N gradient PVD coatings deposited onto sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 629-634.
  • [59] T. Da Silva Botelho, E. Bayraktar, Experimental and finite element analysis of spring back in sheet metal forming, International Journal of Computational Materials Science and Surface Engineering 1/2 (2007) 197-213.
  • [60] I. Son, G. Jin, J. Lee, Y. Im, Load predictions for non-isothermal ECAE by finite element analyses, International Journal of Computational Materials Science and Surface Engineering 1/2 (2007) 242¬258.
  • [61] A.V. Benin, A.S. Semenov, S.G. Semenov, Modeling of fracture process in concrete reinforced structures under steel corrosion, Journal of Achievements in Materials and Manufacturing Engineering 39/2 (2010) 168-175.
  • [62] S. Thipprakmas, M. Jin, K. Tomokazu, Y. Katsuhiro, M. Murakawa, Prediction of fine blanked surface characteristics using the finite element method (FEM), Journal of Materials Processing Technology 198 (2008) 391-398.
  • [63] Z. Tong, Y. Zhang, Z. Zhang, H. Hua, Dynamic behavior and sound transmission analysis of a fluid- structure coupled system using the direct-BEM/FEM, Journal of Sound and Vibration 299/3 (2007) 645-655, doi: https://doi.Org/10.1016/j.jsv.2006.06.063.
  • [64] K. Grabowiecki, A. Brodowski, M. Majewski, Computer aided design system for pressing processes in the automotive industry, Proceedings of the 12th Conference “Informatics in Metal Technology” KomPlastTech, Ustroń, 2005, 141-146 (in Polish).
  • [65] W. Walke, Z. Paszenda, Numerical analysis of three- layer vessel stent made from Cr-Ni-Mo steel and tantalum, International Journal of Computational Materials Science and Surface Engineering 1/1 (2007) 129-137.
  • [66] M. Skura, A. Piela, Problems of SEM modelling for the densification process of porous materials, Ores and Non-Ferrous Metals 44/4 (1999) 187-191 (in Polish).
  • [67] M. Górecki, Computer aided simulation of the vacuum carburizing and gas quenching, proceedings of the 3rd Summer Surface Engineering School, Kielce, 2004, 59-71 (in Polish).
  • [68] J. Grum, R. Sturm, Influence of laser surface melt- hardening conditions on residual stress in thin plates, Surface and Coating Technology 100-101 (1998) 455¬458.
  • [69] K. Lenik, D. Wójcicka-Migasiuk, FEM applications to the analysis of passive solar wall elements, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 333-340.
  • [70] K. Lenik, S. Korga, Deform 3D and Solidworks FEM tests in conditions of sliding, Archives of Materials Science and Engineering 56/2 (2012) 89-92.
  • [71] J. Okrajni, W. Essler, Computer models of steam pipeline components in the evaluation of their local strength, Journal of Achievements in Materials and Manufacturing Engineering 39/1 (2010), pp. 71-78
  • [72] J. Okrajni, M. Plaza, S. Ziemba, Computer modelling of the heat flow in surgical cement during endoprosthesoplasty, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 311-314.
  • [73] J. Okrajni, The thermo-mechanical fatigue in standards and computer modelling, Acta Mechanica et Automática 3/3 (2009) 48-60 (in Polish).
  • [74] J. Okrajni, G. Junak, A. Marek, Modelling of the deformation process under thermo-mechanical fatigue conditions, International Journal of Fatigue 30/2 (2008) 324-329.
  • [75] S.J. Skrzypek, New possibilities of materials own macrostress measurement using X-ray diffraction geometry fixed angle of incidence, AGH Publishing, Cracow, 2002.
  • [76] J. Ratajski, A. Gilewicz, P. Bartosik, L. Szparaga, Mechanical properties of antiwear Cr/CrN multi¬module coatings, Archives of Materials Science and Engineering 75/1 (2015) 35-45.
  • [77] L. Szparaga, P. Bartosik, A. Gilewicz, J. Ratajski, Optimization of CrN/CrCN Gradient Coatings, Solid State Phenomena 237 (2015) 41-46.
  • [78] L. Szparaga, P. Bartosik, A. Gilewicz, J. Ratajski, Optimization Of Multi-Module CrN/CrCN Coatings, Archives of Metallurgy and Materials 60/2 (2015) 1037-1043.
  • [79] L. Szparaga, J. Ratajski, P. Bartosik, Strain field analysis in nanoindentation test of gradient coatings, Archives of Materials Science and Engineering 64/2 (2013)219-227.
  • [80] K. Mydlowska, P. Myslinski, L. Szparaga, A. Gilewicz, J. Ratajski, Analysis of the effect of antiwear CrN coating thickness on the evolution of thermomechanical interactions in the substrate/PVD coating system, Journal of Thermal Analysis and Calorimetry 125 (2016) 1241-1247.
  • [81] P. Myslinski, L. Szparaga, P. Kamasa, A. Gilewicz, J. Ratajski, Application of dilatometry with modulated temperature for thermomechanical analysis of anti-wear coating/substrate systems, Journal of Thermal Analysis and Calorimetry 120 (2015) 1609-1615.
  • [82] L. Szparaga, J. Ratajski, A. Zarychta, Multi objective optimization of wear resistant TiAIN and TiN coatings deposite by PVD techniques, Archives of Materials Science and Engineering 48/1 (2011) 33-39.
  • [83] L. Szparaga, J. Ratajski, Pareto optimal multi¬objective optimization of antiwear TiAlN/TiN/Cr coatings, Advances in Materials Science 14/1(39) (2014)5-13.
  • [84] K. Bouzakis, G. Maliaris, A. Tsouknidas, FEM supported semi-solid high pressure die casting process optimization based on rheological properties by isothermal compression tests at thixo temperatures extracted, Computational Materials Science 59 (2012) 133-139.
  • [85] B. Regener, C. Krempaszky, E. Wemer, M. Stockinger, Modelling the micromorphology of heat treated Ti6A14V forgings by means of spatial tessellations feasible for FEM analyses of microscale residual stresses, Computational Materials Science 52/1 (2012) 77-81.
  • [86] J. Montalvo-Urquizo, P. Bobrov, A. Schmidt, W. Wosniok, Elastic responses of texturized microscale materials using FEM simulations and stochastic material properties, Mechanics of Materials 47 (2012) 1-10.
  • [87] M. Marvi-Mashhadi, M. Mazinani, A. Rezaee-Bazzaz, FEM modeling of the flow curves and failure modes of dual phase steels with different martensite volume fractions using actual microstructure as the representative volume, Computational Materials Science 65 (2012) 197-202.
  • [88] F.R. Liu, Q. Zhang, W.P. Zhou, J.J. Zhao, J.M. Chen, Micro scale 3D FEM simulation on thermal evolution within the porous structure in selective laser sintering, Journal of Materials Processing Technology 212/10 (2012) 2058-2065.
  • [89] Z. Shiping, E.K. Oubai, A.K. Rooh, G.H. Wagdi, FEM analysis of in-flight ice break-up, Finite Elements in Analysis & Design 57 (2012) 55-66.
  • [90] N. Benkemoun, M.N. Hammood, O. Amiri, Embedded finite element formulation for the modeling of chloride diffusion accounting for chloride binding in meso-scale concrete, Finite Elements in Analysis and Design 130 (2017) 12-26.
  • [91] A. Idesman, A. Bhuiyan, J.R. Foleyle, Accurate finite element simulation of stresses for stationary dynamic cracks under impact loading, Finite Elements in Analysis and Design 126 (2017) 26-38.
  • [92] N. Ntallis, K.G. Efthimiadis, A finite elements model including surface contribution in micromagnetic simulation, Finite Elements in Analysis and Design 121 (2016) 33-39.
  • [93] Y. Kim, S. Yaang, D. Shan, S. Choi, S. Lee, B. You, Three-Dimensional Rigid-Plastic FEM Simulation of Metal Forming Processes, Journal of Materials Engineering and Performance 15/3 (2006) 275-279.
  • [94] W. Kwaśny, Predicting properties of PVD and CVD coatings based on fractal quantities describing their surface, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 125-192.
  • [95] T. Tański, K. Lukaszkowicz, M. Staszuk, M. Krupiński, K. Golombek, Structure and properties of gradient/monolithic coatings deposited by PVD and CVD methods onto the magnesium alloys, Wulfenia 20/10 (2013) 2-16.
  • [96] L.A. Dobrzański, M. Staszuk, PVD and CVD gradient coatings on sintered carbides and sialon tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 552-576.
  • [97] K. Golombek, Structure and properties of injection moulding tool materials with nanocrystalline coatings, Open Access Library, Volume 1/19 (2013) 1-136 (in Polish).
  • [98] K. Lukaszkowicz, Forming the structure and properties of hybrid coatings on reversible rotating extrusion dies, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 159¬224.
  • [99] L.A. Dobrzański, K. Golombek, J. Mikuła, D. Pakula, Multilayer and gradient PVD coatings on the sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 170-190.
  • [100] T. Betiuk, T. Borowski, K. Burdyński, The (Ti,Al)N, (Ti,Al)C and (Ti,Al)CN multicompound coatings synthesis in low pressure of DC arc discharge, Engineering Materials 6 (2008) 674-678 (in Polish).
  • [101] L.A. Dobrzański, T. Tański, E. Jonda, A. Drygała, M. Bonek, Laser Surface Treatment in Manufacturing, in: A. Yeh, C. Nee (Eds.), Handbook of Manufacturing Engineering and Technology, Springer, London, 2014, 1-37.
  • [102] J. Kusiński, S. Kac, A. Kopia, A. Radziszewsk, M. Rozmus-Gómikowska, B. Major, L. Major, J. Marczak, A. Lisiecki, Laser modification of the materials surface, Bulletin of the Polish Academy of Sciences: Technical Sciences 60/4 (2012) 711-728.
  • [103] A. Klimpel, L.A. Dobrzański, D. Janicki, A. Lisiecki, Abrasion resistance of GMA metal cored wires surfaced deposits, Journal of Materials Processing Technology 164/165 (2005) 1056-1061.
  • [104] M. Bonek, The investigation of microstructures and properties of high speed steel HS6-5-2-5 after laser alloying, Archives of Metallurgy and Materials 59/4 (2014) 1659-1663.
  • [105] M. Bonek, Effect of high power diode laser surface alloying of tool steels, Chiang Mai Journal of Science 40/5 (2013) 849-856.
  • [106] M. Bonek, Laser Surface Alloying, in: Q. Wang, Y. Chung (Eds.), Encyclopedia of Tribology, Springer¬Verlag, Berlin-Heidelberg, 2013, 1938-1948.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d24dc1d4-46a7-4b7f-9821-2650a8939f6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.