PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

M/G/n/(0, V) Erlang queueing system with non-homogeneous customers, non-identical servers and limited memory space

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, we investigate a?multi-server Erlang queueing system with heterogeneous servers, non-homogeneous customers and limited memory space. The arriving customers appear according to a?stationary Poisson process and are additionally characterized by some random volume. The service time of the customer depends on his volume and the joint distribution function of the customer volume and his service time can be different for different servers. The total customers volume is limited by some constant value. For the analyzed model, steady-state distribution of number of customers present in the system and loss probability are calculated. An analysis of some special cases and some numerical examples are attached as well.
Rocznik
Strony
489--500
Opis fizyczny
Bibliogr. 25 poz., tab.
Twórcy
  • Faculty of Mathematics and Natural Sciences, College of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Poland
  • Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences, Poland
autor
  • Faculty of Mathematics and Natural Sciences, College of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Poland
Bibliografia
  • [1] M.L. Abell and J.P. Braselton, The Mathematica Handbook, Elsevier, 1992.
  • [2] P.P. Bocharov, C. D’Apice, A.V. Pechinkin, and S. Salerno, Queueing Theory, VSP, Utrecht-Boston, 2004.
  • [3] M. Dawson, Python programming for the absolute beginner, Cengage Learning, 2010.
  • [4] A.N. Dudin and V.I. Klimenok, Queueing Systems with Correlated Arrival Processes (in Russian), Belarusian State University Edition, Minsk, 2000.
  • [5] A. Erlang, The theory of probabilities and telephone conversations, Nyt Tidsskrift for Matematik B 20, 1909.
  • [6] A. Erlang, “Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges”, The Post Office Electrical Engineers’ Journal 10 (1918).
  • [7] D. Fakinos, “The generalized M/G/k blocking system with heterogeneous servers”, The Journal of the Operational Research Society 33 (9), (1982).
  • [8] H. Gumbel, “Waiting lines with heterogeneous servers”, Operations Research 8 (4), (1960).
  • [9] J.S Kaufman, “Blocking in a shared resource environment”, IEEE Trans. Commun. 29 (10), (1981).
  • [10] S. Robinson, Simulation: The Practice of Model Development and Use, Palgrave Macmillan, 2014.
  • [11] K.W. Ross, Multiservice Loss Models for Broadband Telecommunication Networks, Springer-Verlag, London, 1995.
  • [12] M. Schwartz, Computer-Communication Network Design and Analysis, Prentice-Hall, New Jersey, 1977.
  • [13] M. Schwartz, TelecommunicationNetworks: Protocols, Modeling and Analysis, Addison-Wesley Publishing Company, 1987.
  • [14] B.A. Sevast’yanov, “An ergodic theorem for Markov processes and its application to telephone systems with refusals”, Theory of Probability and its Applications 2 (1), (1957).
  • [15] V.P. Singh, “Two-server Markovian queues with balking: Heterogeneous vs. homogeneous servers”, Operation Research 18 (1), (1970).
  • [16] V.P. Singh, “Markovian queues with three heterogeneous servers”, AIIE Transactions 3 (1), (1971).
  • [17] J. Sztrik, Basic Queueing Theory, University of Debrecen, Faculty of Informatics 193, 2012.
  • [18] O. Tikhonenko, Probability Methods of Information Systems Analysis (in Polish), Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2006.
  • [19] O.M. Tikhonenko, “Generalized Erlang problem for service systems with finite total capacity”, Problems of Information Transmission 41 (3), (2005).
  • [20] O.M. Tikhonenko, “Queuing systems with processor sharing and limited resources, Automation and Remote Control (71) (5), (2010).
  • [21] M. Ziółkowski, M/M/n/m queueing system with non- identical servers, Jan Długosz University in Cz˛estochowa, Scientific Issues, Mathematics XVI, 2011.
  • [22] M. Ziółkowski and J. Małek, Queueing system M/M/ n/(m,V) with non-identical servers, Jan Długosz University in Częstochowa, Scientific Issues, Mathematics XVIII, 2013.
  • [23] M. Ziółkowski, “M/G/n/0 Erlang queueing system with heterogeneous servers and non-homogeneous customers”, Bulletin of the Polish Academy of Sciences. Technical Sciences 66 (1), (2018).
  • [24] M. Ziółkowski, Generalization of probability density of random variables, Jan Długosz University in Cz˛estochowa, Scientific Issues, Mathematics XIV, 2009.
  • [25] M. Ziółkowski, Some practical applications of generating functions and LSTS. Jan Długosz University in Cz˛estochowa, Scientific Issues, Mathematics XVII, 2012.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d24ae046-e68a-43aa-91f8-8c5e6849d374
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.