PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing Heavy Metal Contamination in Anadara tuberculosa within a Protected Ecosystem

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to assess the levels of heavy metal contamination in Anadara tuberculosa from a protected area in Ecuador. Ten samples were collected from a 50 m2 area, dissected, and analyzed for nine heavy metals (As, Cd, Hg, Pb, Ni, Cr, Cu, Zn, and V) using inductively coupled plasma (ICP). The results revealed significant bioaccumulation of several toxic elements, with maximum concentrations ranging from 2.37 mg/kg for Cr to 73.70 mg/kg for Zn. These elevated levels raise concerns about the potential health risks to both the bivalves themselves and human consumers. Continuous and comprehensive monitoring is crucial to identify and address the environmental impacts associated with heavy metal pollution.
Rocznik
Strony
60--69
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Campus Politécnico El Limón, Calceta, Ecuador
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Campus Politécnico El Limón, Calceta, Ecuador
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Campus Politécnico El Limón, Calceta, Ecuador
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Campus Politécnico El Limón, Calceta, Ecuador
Bibliografia
  • 1. Álava, J., Velasquez, D. 2022. Concentración de metales pesados en sedimentos del refugio de vida silvestre isla corazón y fragatas, cantón Sucre- Manabí. https://repositorio.espam.edu.ec/bitstream/42000/1790/1/TIC_IA11D.pdf
  • 2. Bayas, J., Doumet, Y., Torres, M., Guerrero, Y. 2023. Ecotourism corridor of the La Segua wetland and the Isla Corazón and Fragatas Wildlife Refuge, Manabí -Ecuador. Kalpana Research Journal, 24, 7–23. https://dialnet.unirioja.es/servlet/articulo?codigo=9367936
  • 3. Cao, R., Zhang, Y., Ju, Y., Wang, W., Xi, C., Liu, W., Liu, K. 2022. Exacerbation of copper pollution toxicity from ocean acidification: A comparative analysis of two bivalve species with distinct sensitivities. Environmental Pollution (Barking, Essex: 1987), 293. https://doi.org/10.1016/j.envpol.2021.118525
  • 4. Chavez, E., He, Z., Stoffella, P., Mylavarapu, R., Li, Y., Moyano, B., Baligar, V. 2015. Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. The Science of the Total Environment, 533, 205–214. https://doi.org/10.1016/j.scitotenv.2015.06.106
  • 5. Cruz, M., Ortega, M., Mosalve, E., Mihi, D., Rodríguez, E. 2015. Analysis of metal content in water, sediments and fish in the Santiago River basin, Esmeraldas province. Ecuador Research and Knowledge, 4, 2, 32–42. http://revistasdigitales.utelvt.edu.ec/revista/index.php/investigacion_y_saberes/article/view/85
  • 6. Emami, H., Abtahi, B., Shokri, M. 2024. Heavy metal bioaccumulation (Ni, V and Hg) in soft tissues of crustaceans, bivalves and gastropods: A case study on the Northern Persian Gulf. Caspian Journal of Environmental Sciences, 22, 2, 255–265. https://cjes.guilan.ac.ir/article_7212_a0e-432df811614d42626576ccbe39d89.pdf
  • 7. Environmental Protection Agency United States of America. 2014. Method 6020B (SW-846): Inductively coupled plasma-mass spectrometry. Washington, D.
  • 8. Hansen, G., Shumway, S.E., Mason, R.P., Baumann, Z. 2024. A comparative study of mercury bioaccumulation in bivalve molluscs from a shallow estuarine embayment. Archives of Environmental Contamination and Toxicology, 86, 3, 262–273. https://doi.org/10.1007/s00244-024-01058-w
  • 9. Huang, L., Rad, S., Xu, L., Gui, L., Song, X., Li, Y., Wu, Z., Chen, Z. 2020. Heavy metals distribution, sources, and ecological risk assessment in Huixian wetland, South China. Water, 12(2). https://doi.org/10.3390/w12020431
  • 10. Jiménez-Oyola, S., García-Martínez, M.J., Ortega, M.F., Chavez, E., Romero, P., García- Garizabal, I., Bolonio, D. 2021. Ecological and probabilistic human health risk assessment of heavy metal(loid) s in river sediments affected by mining activities in Ecuador. Environmental Geochemistry and Health, 43, 11, 4459–4474. https://doi.org/10.1007/s10653-021-00935-w
  • 11. Kato, L.S., Ferrari, R.G., Leite, J.V., Conte-Junior, C.A. 2020. Arsenic in shellfish: A systematic review of its dynamics and potential health risks. Marine Pollution Bulletin, 161. https://doi.org/10.1016/j.marpolbul.2020.111693
  • 12. Li, C., Wang, H., Liao, X., Xiao, R., Liu, K., Bai, J., Li, B., He, Q. 2022. Heavy metal pollution in coastal wetlands: A systematic review of studies globally over the past three decades. Journal of Hazardous Materials, 424. https://doi.org/10.1016/j.jhazmat.2021.127312
  • 13. Lucero-Rincón, C.H., Peña Salamanca, E.J., Cantera Kintz, J.R., Lizcano, O.V., Cruz-Quintana, Y., Neira, R. 2023. Assessment of mercury and lead contamination using the bivalve Anadara tuber-culosa (Arcidae) in an estuary of the Colombian Pacific. Marine Pollution Bulletin, 187. https://doi.org/10.1016/j.marpolbul.2022.114519
  • 14. Ministry of Environment, Water and Ecological Transition of Ecuador. 2015. Corazón and Frigate Islands Wildlife Refuge. Protected Areas of Ecuador. http://areasprotegidas.ambiente.gob.ec/es/areas-protegidas/refugio-de-vida-silvestre-islas-coraz%C3%B3n-y-fragatas
  • 15. Ministry of Environment, Water and Ecological Transition of Ecuador. 2014. Management Plan for the Corazón and Fragatas Island Wildlife Refuge (REVISICOF). [http://maetransparente.ambiente. gob.ec/documentacion/Biodiversidad/Documentos/PLAN%20DE%20MANEJO-%20REVISICOF-02-09-2014-ACTUALIZADO.pdf
  • 16. Ministry of Environment, Water and Ecological Transition of Ecuador. 2023. Corazón and Fragatas Island Wildlife Refuge. https://www.ambiente.gob.ec/refugio-de-vida-silvestre-isla-corazon-y-fragatas/
  • 17. Modestin, E., Devault, D.A., Baylet, A., Massat, F., & Dolique, F. 2022. Arsenic in Caribbean bivalves in the context of Sargassum beachings: A new risk for seafood consumers. Environmental Monitoring and Assessment, 194, 8. https://doi.org/10.1007/s10661-022-10230-5
  • 18. Morankar, N.H., R. Kurhe, D.A. 2023. An overview of the impact of heavy metal accumulation on marine molluscs. International Journal of Multidisciplinary Research and Growth Evaluation, 4, 5, 760–764. https://doi.org/10.54660/.ijmrge.2023.4.5.760-764
  • 19. Nasevilla, M., Fernández, L., Yánez-Jácome, G.S., Pozo, P., Dominguez -Granda, L., Romero, H., & Espinoza-Montero, P. 2022. Total mercury determination in bivalves Anadara tuberculosis sold in open markets from Quito, Ecuador. Heliyon, 8, 12. https://doi.org/10.1016/j.heliyon.2022.e12451
  • 20. Otero, X.L., Tierra, W., Atiaga, O., Guanoluisa, D., Nunes, L.M., Ferreira, T.O., Ruales, J. 2016. Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Ríos provinces, Ecuador. The Science of the Total Environment, 573, 778–787. https://doi.org/10.1016/j.scitotenv.2016.08.162
  • 21. Pan, X.D., Han, J.L. 2023. Heavy metals accumulation in bivalve mollusks collected from coastal areas of southeastern China. Marine Pollution Bulletin, 189. https://doi.org/10.1016/j.marpolbul.2023.114808
  • 22. Pozo, W., Santafeliu, T., Carrera, G. 2011. Heavy metals in rice humidities in the lower Guayas River Basin. Masakana 2, 1, 17–30. https://dspace.ucuenca.edu.ec/bitstream/123456789/5383/1/MASKA-NA%20si5938%20%282%29.pdf
  • 23. Pozo-Miranda, F. 2016. Presence of heavy metals cadmium and lead in the Chone River estuary. Revista Ciencia UNEMI, 10, 24, 123–130. http://ojs.unemi.edu.ec/index.php/cienciaunemi/article/view/565/432
  • 24. Roldán-Wong, N.T., Ceballos-Vázquez, B.P., Yee-Duarte, J.A., Camacho-Mondragón, M.A., Kidd, K.A., Shumilin, E., Arellano-Martínez, M. 2023. Human health risk assessment of metals and arsenic via consumption of commercial bivalves in the Gulf of California, Mexico. Environmental Science and Pollution Research International, 30, 18, 51692–51710. https://doi.org/10.1007/s11356-023-25841-9
  • 25. Romero-Estevez, D., Yanez-Jacome, G.S., Dazzini Langdon, M., Simbaña-Farinango, K., Rebolledo Monsalve, E., Durán Cobo, G., Navarrete, H. 2020. An overview of cadmium, chromium, and lead content in bivalves consumed by the community of Santa Rosa island (Ecuador) and its health risk assessment. Frontiers in environmental science, 8. https://doi.org/10.3389/fenvs.2020.00134
  • 26. Sánchez-Mateos, S., Pérez, L.V., Córdova Suárez, M.A., Cabrera-Riofrio, D.A. 2020. Heavy metal contamination in the Cotopaxi and Tungurahua rivers: a health risk. Environmental Earth Sciences, 79. 6. https://doi.org/10.1007/s12665-020-8869-9
  • 27. Ścibior, A., Wnuk, E., Gołębiowska, D. 2021. Wild animals in studies on vanadium bioaccumulation - Potential animal models of environmental vanadium contamination: A comprehensive overview with a Polish accent. The Science of the Total Environment, 785. https://doi.org/10.1016/j.scitotenv.2021.147205
  • 28. Singh, P.P., Gupta, S.M. 2024. Seasonal variation of heavy metals in the bivalves of a major fish landing center in Mumbai. Uttar Pradesh Journal of Zoology, 45, 14, 305–311. https://doi.org/10.56557/upjoz/2024/v45i144207
  • 29. Tanaviyutpakdee, P., Karnpanit, W. 2023. Exposure assessment of heavy metals and microplastic -like particles from consumption of bivalves. Foods (Basel, Switzerland), 12, 16. https://doi.org/10.3390/foods12163018
  • 30. Vera, J. 2023. Review of the water quality status of the mangroves of the Corazón and Fragatas Island National Wildlife Refuge (Manabí -Ecuador). Universitat Polytechnic of Valencia. http://hdl.handle.net/10251/199254
  • 31. Vieira, K.S., Delgado, J.F., Lima, L.S., Souza, P.F., Crapez, M.A., Correa, T.R., Aguiar, V.M., Baptista Neto, J.A., Fonseca, E.M. 2021. Human health risk assessment associated with the consumption of mussels (Perna perna) and oysters (Crassostrea rhizophorae) contaminated with metals and arsenic in the estuarine channel of Vitória Bay (ES), Southeast Brazil. Marine Pollution Bulletin, 172. https://doi.org/10.1016/j.marpolbul.2021.112877
  • 32. Vinces, K.C., Pacheco Flores de Valgaz, A., Ballesteros, J. 2024. Quantification of heavy metal content in Anadara tuberculosis from the Gulf of Guayaquil using ICP-OES: Assessing marine contamination. Applied Sciences (Basel, Switzerland), 14, 5.https://doi.org/10.3390/app14051704
  • 33. Yan, K., Wang, H., Lan, Z., Zhou, J., Fu, H., Wu, L., & Xu, J. 2022. Heavy metal pollution in the soil of contaminated sites in China: Research status and pollution assessment over the past two decades. Journal of Cleaner Production, 373. https://doi.org/10.1016/j.jclepro.2022.133780
  • 34. Zakaria, Z., Zulkafflee, N.S., Mohd Redzuan, N.A., Selamat, J., Ismail, M.R., Praveena, SM, Tóth, G., Abdull Razis, A.F. 2021. Understanding potential heavy metal contamination, absorption, translocation and accumulation in rice and human health risks. Plants, 10, 6. https://doi.org/10.3390/plants10061070
  • 35. Zerizghi, T., Guo, Q., Tian, L., Wei, R., Zhao, C. 2022. An integrated approach to quantify ecological and human health risks of soil heavy metal contamination around coal mining area. The Science of the Total Environment, 814. https://doi.org/10.1016/j.scitotenv.2021.152653
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d24a4942-0fd2-4c17-afb0-2d6269525997
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.