Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Analiza zmian w poziomach metali ciężkich i liczbie mikroorganizmów glebowych w wyniku ostrzałów na Ukrainie
Języki publikacji
Abstrakty
Military activities affect soil conditions through contamination with metal-containing debris, such as projectile and rocket fragments, as well as bullet remnants, leading to the release of heavy metals and subsequent environmental contamination. The goal of our study was to examine the concentration of heavy metals in areas affected by shelling and to assess their impact on the population of soil microorganisms, including those exhibiting heavy-metal resistance. Metal concentrations were analyzed via an XRF analyzer. The study involved examining both soil samples and missile fragments. Microorganisms were isolated using Koch’s and Hungate’s roll tube methods. The concentration of iron in soil was the highest, reaching 8,1991.3±132.8 ppm. The concentration of other metals (Ni, Cu, Cr) varied between 407.5±8.0 ppm and 4.6±2.1 ppm. Cobalt compounds were not detected at the projectiles impact sites. The number of aerobic chemoorganotrophic bacteria in all soil samples was in the range of (1.8±0.2) × 105 – (3.7±0.2) × 105 CFU/g, while chromium-resistant bacteria were, on average, an order of magnitude fewer. The number of anaerobic microorganisms ranged from (1.4±0.2) × 105 to (2.6±0.2) × 105 CFU/g. A follow-up study conducted after three months indicated a tendency for an increase in both aerobic and anaerobic bacteria, including metal-resistant strains. Overall, the total number of microorganisms in all soil samples showed an upward trend. These results show that soil microbial communities may play a role in the detoxification of heavy metals in contaminated soils.
Działania militarne negatywnie wpływają na warunki glebowe poprzez zanieczyszczenie odpadami zawierającymi metale, takimi jak fragmenty pocisków i rakiet, a także pozostałości pocisków. Materiały te ulegają korozji w glebie, co prowadzi do uwolnienia metali ciężkich i skażenia środowiska. Celem naszych badań było zbadanie stężenia metali ciężkich na obszarach dotkniętych ostrzałami i ocena wpływu tego zanieczyszczenia na populację mikroorganizmów glebowych, z uwzględnieniem mikroorganizmów odpornych na metale ciężkie. Stężenie metali (żelaza, chromu, miedzi, kobaltu i niklu) analizowano za pomocą przenośnego analizatora XRF Niton XL5 Plus. Badanie obejmowało zarówno próbki gleby, jak i fragmenty pocisków. Mikroorganizmy tlenowe z badanych próbek gleby izolowano metodą Kocha, natomiast beztlenowe oznaczano metodą rurkową Hungate’a. Stężenie żelaza okazało się najwyższe w glebie, do 81991,3±132,8 ppm. Stężenie innych metali (Ni, Cu, Cr) wahało się w granicach 407,5±8,0 - 4,6±2,1 ppm, w zależności od próbki. Związków kobaltu nie wykryto w miejscach trafień pocisków. Liczba tlenowych bakterii chemoorganotroficznych we wszystkich próbkach gleby mieściła się w zakresie (1,8±0,2) × 105 – (3,7±0,2) × 105 jtk/g, podczas gdy bakterii odpornych na chrom było średnio o rząd wielkości mniej. Liczba mikroorganizmów beztlenowych w próbkach mieściła się w zakresie (1,4±0,2) × 105 – (2,6±0,2) × 105 jtk/g próbki. Badanie kontrolne przeprowadzone po trzech miesiącach wykazało tendencję do wzrostu zarówno bakterii tlenowych, w tym odpornych na metale, jak i beztlenowych. W szczególności liczba tlenowych bakterii chemoorganotroficznych wzrosła do (1,0±0,2) × 106 jtk/g. Wyniki badań wskazują, że społeczności mikroorganizmów glebowych mogą odgrywać rolę w detoksykacji metali ciężkich w zanieczyszczonych glebach.
Czasopismo
Rocznik
Tom
Strony
83--91
Opis fizyczny
Bibliogr. 30 poz., fot., tab., wykr.
Twórcy
autor
- Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
autor
- Department of Extremophilic Microorganisms Biology, D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
autor
- Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
autor
- Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
autor
- Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
autor
- Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
- Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability, Department of Chemical Engineering, Universitat Politecnica de Catalunya-BarcelonaTech, Terrassa, Spain
autor
- Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
- Department of Extremophilic Microorganisms Biology, D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
autor
- Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
- Department of Extremophilic Microorganisms Biology, D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Bibliografia
- 1. Agboola, O., Babatunde, D. E., Isaac Fayomi, O. S., Sadiku, E. R., Popoola, P., Moropeng, L., Yahaya, A. & Mamudu, O. A. (2020). A review on the impact of mining operation: Monitoring, assessment and management. Results in Engineering, 8, 100181. DOI:10.1016/j.rineng.2020.100181
- 2. Ahmad, W., Alharthy, R. D., Zubair, M., Ahmed, M., Hameed, A. & Rafique, S. (2021). Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Scientific Reports, 11(1), 17006. DOI:10.1038/s41598-021-94616-4
- 3. Albrektienė-Plačakė, R. & Paliulis, D. (2024). Investigation on applying sapropel for removal of heavy metals (cadmium, chromium, copper, and zinc) from aqueous solutions. Archives of Environmental Protection, 50, 2, pp. 55-64. DOI:10.24425/aep.2024.150552
- 4. Al-Qadri, F. A. & Alsaiar, R. (2023). Silica ash from waste palm fronds used as an eco-friendly, sustainable adsorbent for the removal of cupper (II). Archives of Environmental Protection, 49(2), pp. 30-39. DOI:10.24425/aep.2023.145894
- 5. Bonchkovskyi, O. S., Ostapenko, P. O., Shvaiko, V. M. & Bonchkovskyi, A. S. (2023). Remote sensing as a key tool for assessing war-induced damage to soil cover in Ukraine (the case study of Kyinska territorial hromada). Journal of Geology, Geography and Geoecology, 32(3), 474-487. DOI:10.15421/11234
- 6. Broomandi, P., Guney, M., Kim, J. R. & Karaca, F. (2020). Soil Contamination in Areas Impacted by Military Activities: A Critical Review. Sustainability, 12(21), 9002. DOI:10.3390/su12219002
- 7. Bukhari, D. A. & Rehman, A. (2023). Metal-resistant bacteria as a green bioresource for arsenic remediation in wastewaters. Current Opinion in Green and Sustainable Chemistry, 40, 100785. DOI:10.1016/j.cogsc.2023.100785
- 8. Butu, A., Grozea, I., Sarac, I. & Butnariu, M. (2020). Global Scenario of Remediation Techniques to Combat Pesticide Pollution. [In] R. A. Bhat, K. R. Hakeem, & M. A. Dervash (Eds.), Bioremediation and Biotechnology, Vol 2 (pp. 47-72). Springer International Publishing. DOI:10.1007/978-3-030-40333-1_4
- 9. Guo, H., Nasir, M., Lv, J., Dai, Y. & Gao, J. (2017). Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicology and Environmental Safety, 144, pp. 300-306. DOI:10.1016/j.ecoenv.2017.06.048
- 10. Havryliuk, O., Bida, I., Hovorukha, V., Bielaieva, Y., Liubinska, A., Gladka, G., Kalinichenko, A., Zaimenko, N., Tashyrev, O. & Dziuba, O. (2024). Application of Granular Microbial Preparation and Silicon Dioxide Analcime for Bioremediation of Ecocide Areas. Sustainability, 16(3), 1097. DOI:10.3390/su16031097
- 11. Havryliuk, О. А., Bida, І. О., Hovorukha, V. М., Danko, Y. P., Gladka, G. V., Sachko, А. V., Yastremska, L. S., Tashyrev, О. B. & Muchnyk, P. V. (2020). Metal-resistant microorganisms of tap water: theoretical justification and biotechnological application. Problems of Environmental Biotechnology. 1-2. DOI:10.18372/2306-6407.1-2.16059
- 12. Hemmat-Jou, M. H., Safari-Sinegani, A. A., Mirzaie-Asl, A. & Tahmourespour, A. (2018). Analysis of microbial communities in heavy metals-contaminated soils using the metagenomic approach. Ecotoxicology, 27(9), pp. 1281-1291. DOI:10.1007/s10646-018-1981-x
- 13. Huminilovych, R., Stadnik, V., Sozanskyi, M., Pidlisnyuk, V. & Ivaniuk, A. (2023). Monitoring of Soils Contaminated by Military Activities During Phytoremediation Using Miscanthus X Giganteus. International Conference of Young Professionals «GeoTerrace-2023», 1-5. DOI:10.3997/2214-4609.2023510113
- 14. Hungate, R. E. (1969). Chapter IV A Roll Tube Method for Cultivation of Strict Anaerobes. [In] Methods in Microbiology, 3, pp. 117-132. Elsevier. DOI:10.1016/S0580-9517(08)70503-8
- 15. Khan, S., Naushad, Mu., Lima, E. C., Zhang, S., Shaheen, S. M. & Rinklebe, J. (2021). Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies - A review. Journal of Hazardous Materials, 417, 126039. DOI:10.1016/j.jhazmat.2021.126039
- 16. Kholoshyn, I. V., Syvyj, M. J., Mantulenko, S. V., Shevchenko, O. L., Sherick, D. & Mantulenko, K. M. (2023). Assessment of military destruction in Ukraine and its consequences using remote sensing. IOP Conference Series: Earth and Environmental Science, 1254, 1, 012132. DOI:10.1088/1755-1315/1254/1/012132
- 17. Lindh, P. & Lemenkova, P. (2022). Soil contamination from heavy metals and persistent organic pollutants (PAH, PCB and HCB) in the coastal area of Västernorrland, Sweden. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 38, 2, pp. 147-168. DOI:10.24425/gsm.2022.141662
- 18. Liu, L., Xia, M., Hao, J., Xu, H. & Song, W. (2021). Biosorption of Pb (II) by the resistant Enterobacter sp.: Investigated by kinetics, equilibriumand thermodynamics. Archives of Environmental Protection, 47, 3, pp.28-36. DOI:10.24425/aep.2021.138461
- 19. Margaryan, A. (2021). Diversity and Application of Heavy-Metal Resistant Microbes. [In] Singh, R.P., Manchanda, G., Bhattacharjee, K. & Panosyan, H. (Eds.), Microbes in Microbial Communities, pp. 153-174) Springer Singapore. DOI:10.1007/978-981-16-5617-0_7
- 20. Melnyk, O., Shevchenko, O., Kuzmin, O. & Niemirich, O. (2023). Risks of toxic environmental pollution from military operations. Food security: modern challenges and mechanisms to ensure, 25. DOI:10.5281/zenodo.7859027
- 21. Mitryasova, O., Smyrnov, V., Koszelnik, P., Salamon, I., Smyrnova, S. & Mats, A. (2024). Geochemical Anomalies of the Heavy Metals in the Industrial and Urban Agglomeration Soils. Ecological Engineering & Environmental Technology, 25, 3, pp. 165-177. DOI:10.12912/27197050/177838
- 22. Parakhnenko, V. Н., Zadorozhna, О. М., Liakhovska, N. O. & Blahopoluchna, A. H. (2023). Environmental assessment of chemical pollution of soils as a result of the war. Taurian Scientific Herald, 131, pp. 367-373. DOI:10.32782/2226-0099.2023.131.46
- 23. Petrushka, K., Malovanyy, M. S., Skrzypczak, D., Chojnacka, K. & Warchoł, J. (2024a). Risks of Soil Pollution with Toxic Elements During Military Actions in Lviv. Journal of Ecological Engineering, 25, 1, pp. 195-208. DOI:10.12911/22998993/175136
- 24. Saleh, T. A., Mustaqeem, M. & Khaled, M. (2022). Water treatment technologies in removing heavy metal ions from wastewater: A review. Environmental Nanotechnology, Monitoring & Management, 17, 100617. DOI:10.1016/j.enmm.2021.100617
- 25. Saran, A., Imperato, V., Fernandez, L., Gkorezis, P., d’Haen, J., Merini, L. J., Vangronsveld, J. & Thijs, S. (2020). Phytostabilization of Polluted Military Soil Supported by Bioaugmentation with PGP-Trace Element Tolerant Bacteria Isolated from Helianthus petiolaris. Agronomy, 10, 2, 204. DOI:10.3390/agronomy10020204
- 26. Shahini, E., Shebanina, O., Kormyshkin, I., Drobitko, A. & Chernyavskaya, N. (2024). Environmental consequences for the world of Russia’s war against Ukraine. International Journal of Environmental Studies, 81, 1, pp. 463-474. DOI:10.1080/00207233.2024.2302745
- 27. Shebanina, O., Kormyshkin, I., Bondar, A., Bulba, I. & Ualkhanov, B. (2024). Ukrainian soil pollution before and after the Russian invasion. International Journal of Environmental Studies, 81, 1, pp. 208-215. DOI:10.1080/00207233.2023.2245288
- 28. Shekhunova, S. B., Stadnichenko, S. M. & Siumar, N. P. (2022). The Issue of Assessing Environmental Risks and Economic Losses of Ukraine’s Subsoil as a Result of Russian Military Aggression Against Ukraine. 16th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment, 1-5. DOI:10.3997/2214-4609.2022580249
- 29. Tauqeer, H. M., Karczewska, A., Lewińska, K., Fatima, M., Khan, S. A., Farhad, M., Turan, V., Ramzani, P. M. A. & Iqbal, M. (2021). Environmental concerns associated with explosives (HMX, TNT, and RDX), heavy metals and metalloids from shooting range soils: Prevailing issues, leading management practices, and future perspectives. [In] Handbook of Bioremediation (pp. 569-590). Elsevier. DOI:10.1016/B978-0-12-819382-2.00036-3
- 30. Tytykalo, R., Pavlovska, N. & Andriiets, M. (2022). Economic and administrative methods of restoration by local governments of the environment of Ukraine destroyed as a result of military operations. Baltic Journal of Economic Studies, 8, 5, pp. 184-190. DOI:10.30525/2256-0742/2022-8-5-184-190
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d249441f-9ad5-4df7-b3b8-f9cfbf19b7dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.