PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model-Driven Engineering and Creative Arts Approach to Designing Climate Change Response System for Rural Africa: A Case Study of Adum-Aiona Community in Nigeria

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie inżynierii sterowania modelami i sztuk pięknych w przygotowywaniu systemu reagowania na zmiany klimatyczne dla obszarów wiejskich w Afryce: przypadek wspólnoty Adum-Aiona w Nigerii
Języki publikacji
EN
Abstrakty
EN
Experts at the just concluded climate summit in Paris (COP21) are unanimous in opinion that except urgent measures are taken by all humans, average global temperature rise would soon reach the deadly 2oC mark. When this happens, socioeconomic livelihoods, particularly in developing economies, would be dealt lethal blow in the wake of associated natural causes such as increased disease burden, soil nutrient destruction, desertification, food insecurity, among others. To avert imminent dangers, nations, including those from Africa, signed a legally bind-ing universally accepted climate control protocol to propagate and regulate environmentally-friendly behaviours globally. The climate vulnerability of Africa as established by literature is concerning. Despite contributing relatively less than other continents to aggregate environmental injustice, the continent is projected to bear the most brunt of environmental degradation. This is on account of her inability to put systems and mechanisms in place to stem consequences of climate change. Hence, our resolve to use a combination of scientific and artistic models to design a response system for tackling climate challenges in Africa. Our model formulation encompasses computational model and creative arts model for drawing attention to environmentally friendly behaviours and climate adaptation and mitigation strategies. In this work, we focus on rural Africa to share experience of climate change impact on agriculture – mainstay of rural African economy. We examine the carbon footprints of a rural community in Nigeria – the Adum-Aiona community – as case study and for industrial experience. The authors will provide operational data to substantiate claims of existential threats posed by greenhouse gas (GHG) generation on livelihoods of rural dwellers. The study will also design and test a Climate Change Response System (CCRS) that will enable people to adapt and reduce climate change impact. To achieve the research objective, the researchers will review literature, gather requirements, model the proposed system using Unified Modelling Language (UML), and test CCRS statically. We expect that the implementation of the proposed system will enable people mitigate the effects of, and adapt to, climate change-induced socioeconomic realities. This is besides the fact that the empirical data provided by the study will help clear doubts about the real or perceived threats of climate change. Finally, the industrial experience and case study we share from Africa using model-driven engineering approach will scale up the repository of knowledge of both climate change research and model-driven engineering community.
PL
Eksperci biorący udział w szczycie klimatycznym w Paryżu (COP21) sugerują, że pomimo mimo podejmowanych działań zaradczych, średnia temperatura na naszej planecie podniesie się wkrótce o 20C. Gdy to nastąpi, społeczno-ekonomiczne podstawy bytu, szczególnie w krajach rozwijających się, zostaną naruszone w wyniku m.in. przewi-dywanego wzrostu zachorowań, zniszczenia gleby, pustynnienia i braku zabezpieczenia żywności. Aby zapobiec zbliżającemu się niebezpieczeństwu podpisano prawnie wiążący protokół klimatyczny, zaakceptowany także przez kraje afrykańskie. Jego celem jest uregulowanie i wsparcie dla zachowań prośrodowiskowych w skali globalnej. Opisywana w literaturze wrażliwość klimatu w Afryce wydaje się być szczególnie istotna. Chociaż w porównaniu do innych kontynentów jej udział w emisji zanieczyszczeń do atmosfery jest mniejszy, to właśnie ten kontynent ma dotknąć największy poziom degradacji środowiskowej. Wynika to m.in. z braku możliwości wdrażania kluczowych dla klimatu systemów i mechanizmów. Stąd wynika nasza determinacja w opracowaniu kombinacji naukowych i artystycznych modeli, służących jako narzędzia do formułowania systemu odpowiedzi na czekające Afrykę zmiany klimatyczne. Nasze podejście obejmuje modele obliczeniowy i odnoszący się do sztuk pięknych, które mają pomóc w zwróceniu uwagi społeczeństw na niezbędne zachowania prośrodowiskowe. W badaniach koncentrujemy się na obszarach wiejskich w Afryce, aby przedstawić wpływ zmian klimatycznych na rolnictwo, które stanowi podstawę afrykańskiego systemu ekonomicznego. Zbadaliśmy ślad węglowy obszarów wiejskich w Nigerii, we wspólnocie Adum-Aiona. Autorzy przedstawiają dane pokazujące realne zagrożenia dla ludzi, które niesie ze sobą emisja gazów cieplarnianych. Prezentowany jest także test odnoszący się do Systemu Odpowiedzi na Zmiany Klimatu, który pomoże mieszkańcom nie tylko w adaptacji do, ale także w zmniejszeniu konsekwencji zmian klimatycznych. Dyskusja zostanie wsparta przeglądem literaturowym, pomagającym lepiej określić wymagania, które powinien spełniać model, z wykorzystaniem UML. Należy się spodziewać, że wdrożenie proponowanego systemu przyniesie realne korzyści, także te noszące się do uwarunkowań społeczno-ekonomicznych. Rezultaty przeprowadzonych badań empirycznych precyzują zakres zagrożeń związanych ze zmianami klimatycznymi. W końcowej części odniesiemy się do doświadczeń związanych z przemysłem, także w kontekście Afryki. Zastosowanie inżynierii sterowania modelami wzbogaca zakres wiedzy odnoszący się zarówno w kontekście badań nad zmianami klimatycznymi, jak i możliwych zastosowań inżynierii.
Czasopismo
Rocznik
Strony
101--116
Opis fizyczny
Bibliogr. 58 poz., fig., tab.
Twórcy
autor
  • Centre for Information Technology and Systems, University of Lagos, Lagos, Nigeria
autor
  • Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
  • Atilim University, Ankara, Turkey
autor
  • Department of Visual and Creative Arts, Federal University, Lafia, Nigeria
Bibliografia
  • 1. AKANDE V., 2016, Calabar Carnival 2016 to Explore Climate Change Again, http://thena-tiononlineng.net/calabar-carnival-2016-to-ex-plore-climate-change-again (15.04.2016).
  • 2. BABATUNDE H.O., 2007, A Comprehensive Approach to Visual and Creative Arts, Agege, Lagos, HOB Designs Nig. Limited, p. 9.
  • 3. BARBIER G., CUCCHI V., HILL R.C.D., 2015, Model-driven engineering applied to crop modeling, in: Ecol. Informatics 26, p. 173-181.
  • 4. BELLPRAT et al., 2015, Unusual past dry and wet rainy seasons over Southern Africa and South America from a climate perspective, in: Weather and Climate Extremes 9, p. 36-46.
  • 5. BRAMBILLA M., FRATERNALI P., 2014. Large-scale Model-Driven Engineering of web user interaction: The WebML and WebRatio experience, in: Science of Computer Programming 89, p. 71-78.
  • 6. BRUNELIERE H. et al., 2014, MoDisco: A model driven reverse engineering framework, in: Infor-mation and Software Technology 56, p. 1012-1032.
  • 7. BUBECK A., MAIDEL B., LOPEZ F.G., 2014, Model driven engineering for the implementation of user roles in industrial service robot applications, in: Proc. Technology 15, p. 605-612.
  • 8. CALATAYUD et al., 2016, Can climate-driven change influence silicon assimilation by cereals and hence the distribution of lepidopteran stem borers in East Africa?, in: Agriculture, Ecosystems and Environment 224, p. 95-103.
  • 9. CALEGARI D., MOSSAKOWSKI T., SZASZ N., 2016, Heterogeneous verification in the context of model driven engineering, in: Science of Computer Programming p. 1-33.
  • 10. CALZADILLA A.,, ZHU T., REHDANZ K., ehdanz, TOL R.S.J., RINGLER C., 2014, Climate change and agriculture: Impacts and adaptation options in South Africa, in: Water Resources and Economics 5, p. 24-48.
  • 11. CERVERA et al., 2015, On the usefulness and ease of use of a model-driven Method Engineering approach, in: Informat. Systems 50, p. 36-50.
  • 12. CHABRIDON S. et al., 2013, Building ubiquitous QoC-aware applications through model-driven software engineering. Science of Computer Programming 78, p. 1912-1929.
  • 13. CHIDIEBERE O., CHIRWA P.W., FRANCIS J., BABALOLA F.D., 2016, Assessing forest-based rural communities’ adaptive capacity and coping strategies for climate variability and change: The case of Vhembe district in South Africa, in: Environmental Development.
  • 14. CHINOWSKY P., SCHWEIKERT A., HAY-LES C., 2014, Potential Impact of Climate Change on Municipal Buildings in South Africa, in: Proc. Econ. and Finance 18, p. 456-464.
  • 15. CICCOZZI F., CICCHETTI A., SJODIN M., 2013, Roundtrip support for extra-functional property management in model-driven engineering of embedded systems, in: Information and Software Technology 55, p. 1085-1100.
  • 16. CUADRADO J.S. et al., 2014, Applying model-driven engineering in small software enterprises, in: Science of Computer Programming 89, p. 176-198.
  • 17. CLARKE et al., 2016, Climatic changes and social transformations in the Near East and North Africa during the ‘long’ 4th millennium BC: A comparative study of environmental and archaeological evidence, in: Quaternary Science Reviews 136, p. 96-121.
  • 18. DAVIES et al., 2014, The CancerGrid experience: Metadata-based model-driven engineering for clinical trials, in: Science of Computer Programming 89, p. 126-143.
  • 19. DAVIES et al., 2015, Formal model-driven engineering of critical information systems, in: Science of Computer Programming 103, p. 88-113.
  • 20. FANT C., SCHLOSSER A., STRZEPEK K., 2016, The impact of climate change on wind and solar resources in southern Africa, in: Applied Energy 161, p. 556-564.
  • 21. GARCIA-MAGARINO G. PALACIOS-NA-VARRO, 2016, A model-driven approach for constructing ambient assisted-living multi-agent systems customized for Parkinson patients, in: The Journal of Systems and Software 111, p. 34-48.
  • 22. GORTON I., 2011, Essential Software Architecture. Springer.
  • 23. GRACE et al., 2015, Linking climate change and health outcomes: Examining the relationship be-tween temperature, precipitation and birth weight in Africa, in: Global Environmental Change 35, p. 125-137.
  • 24. GURUNULE D., NASHIPUDIMATH M., 2015, Analysis of Aspect Orientation and Model Driven Engineering for Code Generation, in: Procedia Computer Science 45, p. 852-861.
  • 25. HOST M., REGNELL B., WOHLIN C., 2000, Using students as subjects - a comparative study of students and professionals in lead-time impact assessment, in: Empirical Software Engineering 5(3), p. 201-214.
  • 26. HUTCHINSON J., WHITTLE J., ROUNCE-FIELD M., 2014, Model-driven engineering practices in industry: Social, organizational and managerial factors that lead to success or failure, in: Science of Computer Programming 89, p. 144-161.
  • 27. JONES M.R., SINGELS A., RUANE A.C., 2015, Simulated impacts of climate change on water use and yield of irrigated sugarcane in South Africa, in: Agricultural Systems 139, p. 260-270.
  • 28. KAHSAY G.A, HANSEN L.G., 2016, The effect of climate change and adaptation policy on agricultural production in Eastern Africa, in: Ecological Economics 121, p. 54-64.
  • 29. KLAUSBRUCKER et. al, 2016, A policy review of synergies and trade-offs in South African climate change mitigation and air pollution control strategies, in: Environmental Science & Policy 57, p. 70-78.
  • 30. KUSANGAYAS. et al., 2014, Impacts of climate change on water resources in southern Africa: A review, in: Physics and Chemistry of the Earth 67/69, p. 47-54.
  • 31. LI et al., 2015, Hydrological projections under climate change in the near future by RegCM4 in Southern Africa using a large-scale hydrological model, in: Journal of Hydrology 528, p. 1-16.
  • 32. LIM S. et al., 2016, 50,000 years of vegetation and climate change in the southern Namib Desert, Pella, South Africa, in: Palaeogeography, Palaeoclimatology, Palaeoecology 451, p. 197-209.
  • 33. LUKMAN T. et al., 2013, Model-driven engineering of process control software – beyond device-centric abstractions, in: Control Engineering Practice 21, p. 1078-1096.
  • 34. LUTJEN M. et al., 2014, Model-driven logistics engineering – challenges of model and object transformation, in: Procedia Technology 15, p. 303-312. 15, p. 303-312.
  • 35. MARTINEZ-GARCIA et al., 2015, Working with the HL7 metamodel in a Model Driven Engineering context, in: Journal of Biomedical Informatics 57, p. 415-424.
  • 36. MOYO E.N., SHINGIRAI S., 2015, Southern Africa’s 2012-13 Violent Storms: Role of Climate Change, in: Procedia IUTAM 17, p. 69-78.
  • 37. NIELSEN J., LANDAUER T., 1993, A mathematical model of the finding of usability problems, in: Proceedings of ACM INTERCHI'93 Conference, p. 206-213.
  • 38. PANESAR-WALAWEGE R.K., SABETZAD-EH M., BRIAND L., 2013, Supporting the veryfication of compliance to safety standards via model-driven engineering: Approach, tool-support and empirical validation, in: Information and Soft-ware Technology 55, p. 836-864.
  • 39. PEREZ et al., 2015, How resilient are farming households and communities to a changing climate in Africa? A gender-based perspective, in: Global Environmental Change 34, p. 95-107.
  • 40. RALEIGH C., CHOI H.J., KNIVETON D., 2015, The devil is in the details: An investigation of the relationships between conflict, food price and cli-mate across Africa, in: Global Environmental Change 32, p. 187-199.
  • 41. RIESENFELD R.F., HAIMES R., COHEN E., 2015, Initiating a CAD renaissance: Multidisciplinary analysis driven design Framework for a new generation of advanced computational design, engineering and manufacturing environments, in: Comput. Methods Appl. Mech. Engrg. 284, p. 1054-1072.
  • 42. RUNESON P., 2003, Using students as Experiment Subjects – An Analysis on Graduate and Freshmen Student Data, in: (ed.) Linkman S., 7th International Conference on Empirical Assessment & Evaluation in Software Engineering (EASE'03), p. 95-102.
  • 43. RUTLE A. et al., 2015, Model-Driven Software Engineering in Practice: a Content Analysis Soft-ware for Health Reform Agreements, in: Procedia Computer Science 63, p. 545-552.
  • 44. SCHROTH G. et al., 2016, Vulnerability to cli-mate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation, in: Science of the Total Environment 556, p. 231-241.
  • 45. SAURO J., KINDLUND E., 2005, A Method to Standardize Usability Metrics into a Single Score, in: Proceedings of ACM SIGCHI Conference on Human Factors in Computing Systems, ACM, p. 401-409.
  • 46. SEO S.N., 2014. Evaluation of the Agro-Ecological Zone methods for the study of climate change with micro farming decisions in sub-Saharan Africa, in: Europ. J. Agr. 52, p. 157-165.
  • 47. Da SILVA R., 2015, Model-driven engineering: A survey supported by the unified conceptual model, in: Computer Languages, Systems & Structures 43, p. 139-155.
  • 48. SIROHI N., PARASHAR A., 2013, Component Based System and Testing Techniques, in Advanced Research in Computer and Communication Engineering, 2(6), p. 33-42.
  • 49. STEYNOR et al., 2016, Co-exploratory climate risk workshops: Experiences from urban Africa, in: Climate Risk Management.
  • 50. SVAHNBERG M., AURUM A., WOHLIN C., 2008, Using students as Subjects -An Empirical Evaluation, in: Proc. 2nd International Symposium on Empirical Software Engineering and Management ACM, p. 288-290
  • 51. TURNER C.W., LEWIS J.R., NIELSEN J., 2006, Determining usability test sample size, in: (ed.) Karwowski W., International Encyclopaedia of Ergonomics and Human Factors, CRC Press, Boca Raton, p. 3084-3088.
  • 52. WAUTELET Y., KOLP M., 2016, Business and model-driven development of BDI multi-agent system, in: Neurocomputing 182, p. 304-321.
  • 53. WEBBER H., GAISER T., EWERT F., 2014, What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa?, in: Agricultural Systems 127, p. 161-177.
  • 54. WEHRMEISTER et al., 2014, Combining aspects and object-orientation in model-driven engineering for distributed industrial mechatronics systems, in: Mechatronics 24, p. 844-865.
  • 55. van WESENBEECK C.F.A., 2016, Localization and characterization of populations vulnerable to climate change: Two case studies in Sub-Saharan Africa, in: Appl. Geogr. 66, p. 81-91.
  • 56. WUNDSCH M. et al., 2016, Sea level and climate change at the southern Cape coast, South Africa, in: Palaeogeography, Palaeoclimatology, Palaeoecology 446, p. 295-307.
  • 57. YOUNG A.J. et al. 2016, Biodiversity and climate change: Risks to dwarf succulents in Southern Africa, in: J. of Ar. Env.129, p. 16-24.
  • 58. ZINYENGERE N., CRESPO O., HACHIG-ONTAS., 2013, Crop response to climate change in southern Africa, in: Global and Planetary Change 111, p. 118-126.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d248b90d-4e85-463f-8dd5-761076385599
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.