PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of CO2 by surface modified coal-based activated carbons: kinetic and thermodynamic analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of different surface modifiers on the CO2 adsorption capacity of coal-based activated carbons were studied, and the diffusion behavior, adsorption kinetics and thermodynamic parameters of CO2 in activated car-bons were analyzed. The results show that compared with ethylene glycol, 1,2-propylenediamine and zinc chloride, potassium hydroxide and sodium hydroxide can greatly improve CO2 adsorption capacity. The adsorption rate is faster, and the adsorption capacity is larger, with the maximum CO2 adsorption capacity being 33.54 mL/g. Fick’s law can well describe the diffusion behavior of CO2 in activated carbon. The addition of a surface modifier can increase the diffusion coefficient. The diffusion of CO2 in activated carbon falls into the category of crystal diffusion. The adsorption kinetics of CO2 before and after surface modification follow the Bangham equation. During the adsorption process, δ H < 0, δ G < 0, δ S < 0. Surface modification can reduce adsorption heat and promote adsorption, and the adsorption process is dominated by physisorption.
Rocznik
Strony
19--28
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wz.
Twórcy
autor
  • School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
  • School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
autor
  • School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
autor
  • School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
  • School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
  • School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
  • School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
Bibliografia
  • 1. Di Paola, G., A. Rizzo, A.G. Benassai, G. Corrado, F. Matano & P. P. Aucelli (2021). Sea-level rise impact and future scenarios of inundation risk along the coastal plains in Campania (Italy). Environ. Earth Sci. 80 (17), 1–22. DOI: 10.1007/s12665-021-09884-0.
  • 2. Aihaiti, A., Jiang, Z., Zhu, L., Li, W. & You Q. (2021). Risk changes of compound temperature and precipitation extremes in China under 1.5°C and 2°C global warming. Atmospheric Research 264, 105838. DOI: 10.1016/j.atmosres.2021.105838.
  • 3. Keeling, C.D., Bacastow, R.B., Bainbridge, A.E., Ekdahl Jr, C.A., Guenther, P.R., Waterman, L.S. & Chin, J.F. (1976). Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus 28 (6), 538–551. DOI: 10.1111/j.2153-3490.1976.tb00701.x.
  • 4. Benson, S., Chandler, W., Edmonds, J., Houghton, J., Levine, M., Bates, L., Chum, H., Dooley, J., Grether, D. & Logan, J.(1998). Assessment of basic research needs for greenhouse gas control technologies, Lawrence Berkeley National Lab., Berkeley, CA (US). ISBN: 9780080430188.
  • 5. Zhang, Y.D. & Zhao, T. (2013). Analysis on emission reduction targets of carbon dioxide in China. Advanced Materials Research, Trans Tech Publ. 734–737, 1891–1895. DOI: 10.4028/www.scientific.net/AMR.734-737.1891.
  • 6. Krishnaiah, D., Bono, A., Anisuzzaman, S., Joseph C., & Khee T.B. (2014). Carbon dioxide removal by adsorption. J. Appl. Sci. 14 (23), 3142–3148. DOI: 10.3923/jas.2014.3142.3148.
  • 7. Y Mohd Yazri, M.H. (2013). Development of Ionic Liquid Mixed Matrix Membrane (ILMMM) for Carbon Dioxide Removal. Universiti Teknologi Petronas. http://utpedia.utp.edu.my/id/eprint/8401.
  • 8. Abd, A.A., Naji, S.Z., Hashim, A.S. & Othman, M.R. (2020). Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: a review. J. Environ. Chem. Engin. 8 (5), 104142. DOI: 10.1016/j.jece.2020.104142.
  • 9. Areán, C.O. & Delgado, M.R. (2010). Variable-temperature FT-IR studies on the thermodynamics of carbon dioxide adsorption on a faujasite-type HY zeolite. Appl. Surf. Sci. 256 (17), 5259–5262. DOI: 10.1016/j.apsusc.2009.12.114.
  • 10. Ho, M.T., Allinson G.W. & Wiley, D.E. (2008). Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Ind. & Engin. Chem. Res. 47 (14), 4883–4890. DOI: 10.1021/ie070831e.
  • 11. Lin, R., Zhuang, L., Xu, X. & Chen, S. (2013). Design of a viscose based solid amine fiber: effect of its chemical structure on adsorption properties for carbon dioxide. J. Coll. Inter. Sci. 407, 425–431. DOI: 10.1016/j.jcis.2013.06.029.
  • 12. Horio, M., Suzuki, K., Mori, T., Inukai, K. & Tomura, S., (1997). Method for separation of nitrogen and carbon dioxide by use of ceramic materials as separating agent, Google Patents.
  • 13. Mujmule, R.B., Chung, W.J. & Kim, H. (2020). Chemical fixation of carbon dioxide catalyzed via hydroxyl and carboxyl-rich glucose carbonaceous material as a heterogeneous catalyst. Chem. Engin. J. 395, 125164. DOI: 10.1016/j.cej.2020.125164.
  • 14. Hou, M., Qi, W., Li, L., Xu, R., Xue, J. Zhang, Y., Song, C. & Wang, T. (2021). Carbon molecular sieve membrane with tunable microstructure for CO2 separation: Effect of multiscale structures of polyimide precursors. J. Membr. Sci. 635: 119541. DOI: 10.1016/j.memsci.2021.119541.
  • 15. Bell, J.G., Be nham, M.J. & Thomas, K.M. (2021). Adsorption of Carbon Dioxide, water vapor, nitrogen, and sulfur dioxide on activated carbon for capture from flue gases: competitive adsorption and selectivity aspects. Energy & Fuels 35(9), 8102-8116. DOI: 10.1021/acs.energyfuels.1c00339.
  • 16. Yenisoy-Karakaş, S., Aygün, A., Güneş, M. & Tahtasakal, E. (2004). Physical and chemical characteristics of polymer-based spherical activated carbon and its ability to adsorb organics. Carbon 42 (3), 477–484. DOI: 10.1016/j.carbon.2003.11.019.
  • 17. Ma, R., Qin, X., Liu, Z., & Fu, Y. (2019). Adsorption property, kinetic and equilibrium studies of activated carbon fiber prepared from liquefied wood by ZnCl2 activation. Materials 12 (9), 1377. DOI: 10.3390/ma12091377.
  • 18. Ramírez, A., Sierra, L., Mesa, M. & Restrepo, J. (2005). Simulation of nitrogen a dsorption–desorption isotherms. Hysteresis as an effect of pore connectivity. Chem. Engin. Sci. 60 (17), 4702–4708. DOI: 10.1016/j.ces.2005.03.004.
  • 19. Voigt, W. (1993). Calculation of salt activities in molten salt hydrates applying the modified BET equation, I: Binary systems. Monatshefte für Chemie/Chemical Monthly 124 (8), 839–848. DOI: 10.1007/bf00816406
  • 20. Nunes, C.A. & Guerreiro, M.C. (2011). Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers. Química Nova 34, 472–476. DOI: 10.1590/S0100-40422011000300020.
  • 21.. Lawrence, N.S. & Wang, J. (2006). Chemical adsorption of phenothiazine dyes onto carbon nanotubes: Toward the low potential detection of NADH. Electrochem. Commun. 8 (1), 71–76. DOI: 10.1016/j.elecom.2005.10.026.
  • 22. Rozanov, L. (20 21). Kinetic equations of non-localized physical adsorption in vacuum for Freundlich adsorption isotherm. Vacuum 189, 110267. DOI: 10.1016/j.vacuum.2021.110267.
  • 23. Azuara, E., Cortes, R., Garcia, H.S. & Beristain, C.I. (1992). Kinetic model for osmotic dehydration and its relation-ship with Fick's second law. Inter. J. Food Sci. & Technol. 27 (4), 409–418. DOI: 10.1111/j.1365-2621.1992.tb01206.x.
  • 24. Crich, D., Jiao, X.Y., Yao, Q. & Harwood, J.S. (1996). Radical Clock Reactions under Pseudo-First-Order Conditions Using Catalytic Quantities of Diphenyl Diselenide. A 77Seand 119Sn-NMR Study of the Reaction of Tributylstannane and Diphenyl Diselenide. J. Organic Chem. 61 (7), 2368–2373. DOI: 10.1021/jo950857s.
  • 25. Ho, Y.S. & Ofomaja, A.E. (2006). Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. J. Hazard. Mater. 129(1–3), 137–142. DOI: 10.1016/j.jhazmat.2005.08.020.
  • 26. Moon, H. & Lee W.K. (1983). Intraparticle diffusion in liquid-phase adsorption of phenols with activated carbon in finite batch adsorber. J. Coll. Interf. Sci. 96 (1), 162–171. DOI: 10.1016/0021-9797(83)90018-8.
  • 27. Xiong, F., Hwang, B., Jiang, Z., James, D., Lu, H. & Moortgat, J. (2021). Kinetic emission of shale gas in saline water: Insights from experimental observation of gas shale in canister desorption testing. Fuel 300, 121006. DOI: 10.1016/j.fuel.2021.121006.
  • 28. Qin, C., Jiang, Y., Zuo, S., Chen, S., Xiao, S., & Liu, Z. (2021). Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2. Energy 236, 121410. DOI: 10.1016/j.energy.2021.121410.
  • 29. Shen, D., Bülow, M., Siperstein, F., Engelhard, M. & Myers, A.L. (2000). Comparison of experimental techniques for measuring isosteric heat of adsorption. Adsorption 6 (4), 275–286. DOI: 10.1023/A:1026551213604.
  • 30. Fung, V., Hu, G., Ganesh, P. & Sumpter, B.G. (2021). Machine learned features from density of states for accurate adsorption energy prediction. Nature Commun. 12 (1), 1–11. DOI: 10.1038/s41467-020-20342-6.
  • 31. Qiu, J., Wang, Y., Wu, P., Jiang, S., Cui, K., Chen, G., Liu, D. & Cui, G. (2021). Adsorption characteristics of hexadecyl ammonium with different numbers of carbon chains in montmorillonite and the structure of the prepared composites. J. Porous Mat. 28 (6), 1675–1687. DOI: 10.1007/s10934-021-01114-z.
  • 32. Jin, C., Sun, J., Chen, Y., Guo, Y., Han, D., Wang, R. & Zhao, C. (2021). Sawdust wastes-derived porous carbons for CO2 adsorption. Part 1. Optimization preparation via orthogonal experiment. Separation and Purification Technology 276, 119270. DOI: 10.1016/j.seppur.2021.119270.
  • 33. Jiao, J., Cao, J., Xia, Y. & Zhao, L. (2016). Improvement of adsorbent materials for CO2 capture by amine functionalized mesoporous silica with worm-hole framework structure. Chem. Engin. J. 306, 9–16. DOI: 10.1016/j.cej.2016.07.041.
  • 34. Jia, J., Wang, Y., Feng, Y., Hu, G., Lin, J., Huang, Y., Zhang, Y., Liu, Z., Tang, C. & Yu, C., (2021). Hierarchically porous boron nitride/HKUST-1 hybrid materials: synthesis, CO2 adsorption capacity, and CO2/N2 and CO2/CH4 selectivity. Ind. & Engin. Chem. Res. 60 (6), 2463–2471. DOI: 10.1021/acs.iecr.0c05701.
  • 35. Pham, T.H., Lee, B.K. & Kim, J. (2016). Novel improvement of CO2 adsorption capacity and selectivity by ethylenediamine-modified nano zeolite. J. Taiwan Inst. Chem. Engin. 66, 239–248. DOI: 10.1016/j.jtice.2016.06.030.
  • 36. Lee, S.Y. & Park, S.J. (2013). Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. J. Col. Int. Sci. 389 (1), 230–235. DOI: 10.1016/j.jcis.2012.09.018.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d246d6df-a342-4587-a1b2-fbbdde4f0f16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.