PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intrinsic linewidth calculation in an argon X-ray laser based on the model of geometrically dependent gain coefficient

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By introducing differential amplified spontaneous emission intensity, numerical calculations for both homogeneously and Doppler broadened lines, and using the reported experimental measurements of the amplified spontaneous emission intensity and linewidth, we managed to explain the linewidth behavior, and calculate the intrinsic linewidth due to Voigt-profile width in an argon X-ray laser operating at 440 × 10–3 torr argon pressure and current of 21 kA. For the calculation, the intensity rate equation, along with the model of geometrically dependent gain coefficient were applied. The calculated value of the intrinsic linewidth was found to be 55.67 mÅ, which is very close to the Doppler broadened line of 53.52 mÅ. That is, the collision broadening has a very small contribution to the light-matter interaction in argon X-ray lasers. Details of the procedure used for the calculation will be presented in this paper.
Słowa kluczowe
Czasopismo
Rocznik
Strony
325--335
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Laser and Optics Research Department, Nuclear Science and Technology Research Institute, North Kargar Avenue, P.O. Box 11365-8486, Tehran, Iran
autor
  • Laser and Optics Research Department, Nuclear Science and Technology Research Institute, North Kargar Avenue, P.O. Box 11365-8486, Tehran, Iran
Bibliografia
  • [1] MATTHEWS D.L., HAGELSTEIN P.L., ROSEN M.D., ECKART M.J., CEGLIO N.M., HAZI A.U., MEDECKI H., MACGOWAN B.J., TREBES J.E., WHITTEN B.L., CAMPBELL E.M., HATCHER C.W., HAWRYLUK A.M., KAUFFMAN R.L., PLEASANCE L.D., RAMBACH G., SCOFIELD J.H., STONE G., WEAVER T.A., Demonstration of a soft X-ray amplifier, Physical Review Letters 54(2), 1985, pp. 110–113.
  • [2] ROSEN M.D., HAGELSTEIN P.L., MATTHEWS D.L., CAMPBELL E.M., HAZI A.U., WHITTEN B.L., MACGOWAN B., TURNER R.E., LEE R.W., CHARATIS G., GAR. E. BUSCH, SHEPARD C.L., ROCKETT P.D., Exploding-foil technique for achieving a soft X-ray laser, Physical Review Letters 54(2), 1985, pp. 106–109.
  • [3] CAIRNS G.F., HEALY S.B., LEWIS C.L.S., PERT G.J., ROBERTSON E., A time-resolved spectroscopy study of the resonance-line emission in the Ge XXIII XUV laser, Journal of Physics B: Atomic, Molecular and Optical Physics 29(20), 1996, pp. 4839–4854.
  • [4] ALESSI D., LUTHER B.M., WANG Y., LAROTONDA M.A., BERRILL M., ROCCA J.J., High repetition rate operation of saturated tabletop soft X-ray lasers in transitions of neon-like ions near 30 nm, Optics Express 13(6), 2005, pp. 2093–2098.
  • [5] GANG YUAN, KATO Y., MURAI K., DAIDO H., KODAMA R., Measurement of linewidths of Ne-like germanium soft x-ray laser in slab targets, Journal of Applied Physics 78(6), 1995, pp. 3610–3616.
  • [6] HEALY S.B., JANULEWICZ K.A., PLOWES J.A., PERT G.J., Transient high gains at 196 Å produced by picosecond pulse heating of a preformed germanium plasma, Optics Communications 132(4–6), 1996, pp. 442–448.
  • [7] CARILLON A., CHEN H.Z., DHEZ P., DWIVEDI L., JACOBY J., JAEGLE P., JAMELOT G., JIE ZHANG, KEY M.H., KIDD A., KLISNICK A., KODAMA R., KRISHNAN J., LEWIS C.L.S., NEELY D., NORREYS P., O’NEILL D., PERT G.J., RAMSDEN S.A., RAUCOURT J.P., TALLENTS G.J., UHOMOIBHI J., Saturated and near-diffraction-limited operation of an XUV laser at 23.6 nm, Physical Review Letters 68(19), 1992, pp. 2917–2920.
  • [8] DUNN J., LI Y., OSTERHELD A.L., NILSEN J., HUNTER J.R., SHLYAPTSEV V.N., Gain saturation regime for laser-driven tabletop, transient Ni-like ion X-ray lasers, Physical Review Letters 84(21), 2000, pp. 4834–4837.
  • [9] GUILBAUD O., KLISNICK A., JOYEUX D., BENREDJEM D., CASSOU K., KAZAMIAS S., ROS D., PHALIPPOU D., JAMELOT G., MÖLLER C., Longitudinal coherence and spectral profile of a nickel-like silver transient soft X-ray laser, The European Physical Journal D 40(1), 2006, pp. 125–132.
  • [10] KOCH J.A., MACGOWAN B.J., DA SILVA L.B., MATTHEWS D.L., UNDERWOOD J.H., BATSON P.J., LEE R.W., LONDON R.A., MROWKA S., Experimental and theoretical investigation of neonlike selenium X-ray laser spectral linewidths and their variation with amplification, Physical Review A 50(2), 1994, pp. 1877–1898.
  • [11] HOLDEN P.B., HEALY S.B., LIGHTBODY M.T.M., PERT G.J., PLOWES J.A., KINGSTON A.E., ROBERTSON E., LEWIS C.L.S., NEELY D., A computational investigation of the neon-like germanium collisionally pumped laser, Journal of Physics B: Atomic, Molecular and Optical Physics 27(2), 1994, pp. 341–367.
  • [12] TALLENTS G.J., The physics of soft X-ray lasers pumped by electron collisions in laser plasmas, Journal of Physics D: Applied Physics 36(15), 2003, pp. R259–R276.
  • [13] MACGOWAN B.J., DA SILVA L.B., FIELDS D.J., KEANE C.J., KOCH J.A., LONDON R.A., MATTHEWS D.L., MAXON S., MROWKA S., OSTERHELD A.L., SCOFIELD J.H., SHIMKAVEG G., TREBES J.E., WALLING R.S., Short wavelength X-ray laser research at the Lawrence Livermore National Laboratory, Physics of Fluids B: Plasma Physics 4(7), 1992, pp. 2326–2337.
  • [14] ROCCA J.J., Table-top soft X-ray lasers, Review of Scientific Instruments 70(10), 1999, pp. 3799–3827.
  • [15] LINFORD G.J., PERESSINI E.R., SOOY W.R., SPAETH M.L., Very long lasers, Applied Optics 13(2), 1974, pp. 379–390.
  • [16] PERT G.J., Output characteristics of amplified-stimulated-emission lasers, Journal of the Optical Society of America B 11(8), 1994, pp. 1425–1435.
  • [17] HARIRI A., SARIKHANI S., Application of the geometrically dependent gain coefficient model to describe amplified spontaneous emission behavior in organic solid laser materials: theoretical considerations, Journal of Modern Optics 62(10), 2015, pp. 822–829.
  • [18] HARIRI A., SARIKHANI S., Study of spectral linewidth in Ne-like Se X-ray laser, Applied Optics 54(33), 2015, pp. 9681–9687.
  • [19] HARIRI A., SARIKHANI S., A two dimensional theoretical model for describing gain coefficient in N2-lasers and the model validity for CVL and excimer lasers, Optics Communications 284(8), 2011, pp. 2153–2163.
  • [20] HARIRI A., SARIKHANI S., Theoretical application of z-dependent gain coefficient to describe amplified spontaneous emission, Optics Letters 37(6), 2012, pp. 1127–1129.
  • [21] HARIRI A., SARIKHANI S., Study of the amplified spontaneous emission spectral width and gain coefficient for a KrF laser in unsaturated and saturated conditions, Laser Physics Letters 11(1), 2014, article ID 015003.
  • [22] YARIV A., Quantum Electronics, 3rd Ed., Jhon Wiley and Sons, New York, 1989.
  • [23] SVELTO O., Principles of Lasers, 5th Ed., Springer, 2010.
  • [24] OLIVERO J.J., LONGBOTHUM R.L., Empirical fits to the Voigt line width: a brief review, Journal of Quantitative Spectroscopy and Radiative Transfer 17(2), 1977, pp. 233–236.
  • [25] URBANSKI L., MARCONI M.C., MENG L.M., BERRILL M., GUILBAUD O., KLISNICK A., ROCCA J.J., Spectral linewidth of a Ne-like Ar capillary discharge soft-X-ray laser and its dependence on amplification beyond gain saturation, Physical Review A 85(3), 2012, article ID 033837.
  • [26] LEE Y.T., MORE R.M., An electron conductivity model for dense plasmas, Physics of Fluids 27(5), 1984, pp. 1273–1286.
  • [27] TALIN B., DUFOUR E., CALISTI A., GIGOSOS M.A., GONZÁLEZ M.A., DEL RÍO GAZTELURRUTIA T., DUFTY J.W., Molecular dynamics simulation for modelling plasma spectroscopy, Journal of Physics A: Mathematical and Theoretical 36(22), 2003, pp. 6049–6056.
  • [28] ALLEN L., PETERS G.I., Amplified spontaneous emission II. The connection with laser theory, Journal of Physics A: General Physics 4(3), 1971, pp. 377–381.
  • [29] HARIRI A., SARIKHANI S., Theoretical study of amplified spontaneous emission in Ne-like Se X-ray laser: spectral linewidth and gain coefficient, Optical and Quantum Electronics 48(3), 2016,
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d242dfb1-70e7-4504-8940-6c930c51bed6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.