PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of the arduino module in controlling the vegetable industry equipment on the example of a weighing-packing machine®

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie modułu Arduino w sterowaniu urządzeniami przemysłu warzywniczego na przykładzie wagoworkownicy®
Języki publikacji
EN
Abstrakty
EN
The article presents the concept and the completed prototype of a mechatronic, automated two-belt weighing-packing machine for vegetables. The solutions for the mechanical, electrical and electronic parts have been developed by the authors. The control concept was based on the Arduino programming platform and the Arduino 2560 board, while the control system itself was implemented in C++. The paper describes the structure of the machine as well as tests for checking the effectiveness of the machine for weighing potatoes in 2, 5 and 10 kg portions.
PL
W artykule przedstawiono koncepcję oraz zrealizowany prototyp mechatronicznej, automatycznej dwutaśmowej wagoworkownicy do warzyw. Rozwiązania części mechanicznej, elektrycznej jak i elektronicznej zostały opracowane przez autorów. Koncepcję sterowania oparto o platformę programistyczną Arduino oraz płytkę Arduino 2560, zaś sam system sterowania zaimplementowano w języku C++. W pracy zawarto opis konstrukcji maszyny, jak i badania sprawdzające skuteczność działania maszyny dla ważenia ziemniaków w porcje 2, 5 i 10kg.
Słowa kluczowe
EN
PL
Rocznik
Tom
Strony
95--104
Opis fizyczny
Bibliogr. 37 poz., fig., rys., tab.
Twórcy
  • Instytut Inżynierii Mechanicznej, Katedra Inżynierii Produkcji, SGGW w Warszawie, Polska
autor
  • Instytut Inżynierii Mechanicznej, Katedra Inżynierii Produkcji, SGGW w Warszawie, Polska
  • Instytut Inżynierii Mechanicznej, Katedra Inżynierii Produkcji, SGGW w Warszawie, Polska
  • Instytut Inżynierii Mechanicznej, Katedra Inżynierii Produkcji, SGGW w Warszawie, Polska
autor
  • Institute of Automation and Production Systems, Faculty of Mechanical Engineering, University of Žlina Slovak Republic
Bibliografia
  • [1] Arduino. The original all-in-one IoT platform. Available online: https://www.arduino.cc/ (accessed on 23 October 2020).
  • [2] ATTORP A., R. MCAREAVEY. 2020. „Muck, brass and smoke: Policy post-exceptionalism in the agri-food sector”. Journal of Rural Studies 79: 302–310.
  • [3] BIANCHI R.J., J.H. FAN, N. TODOROVA. 2020.„Financialization and definancialization of commodity futures: A quantile regression approach”. International Review of Financial Analysis 68: 101451.
  • [4] Bijlsma Hercules. Available online: https://www.bi-jlsmahercules.nl/ (accessed on 23 October 2020).
  • [5] CANDELAS FA., GJ. GARCÍA, S. PUENTE, J. POMARES, CA. JARA, J. PÉREZ, D. MIRA, F. TORRES. 2015. „Experiences on using Arduino for laboratory experiments of Automatic Control and Robotics”. IFAC-PapersOnLine 48(29): 105–110.
  • [6] CHAMS N., B. GUESMI, J.M. GIL. 2020. „Beyond scientific contribution: Assessment of the societal impact of research and innovation to build a sustainable agri-food sector”. Journal of Environmental Management 264: 110455.
  • [7] DE OLIVEIRA RCR., C. GARCIA. 2013. „Simulator for a packing and weighing system of granulated powders”. ISA Transactions 52(5): 672–683.
  • [8] FAN J., Y. ZHANG, W. WEN, S. GU, X. LU, X. GUO. 2021. „The future of Internet of Things in agriculture: Plant high-throughput phenotypic platfor”. Journal of Cleaner Production 280(1): 123651.
  • [9] GRAS C., D.M. CÁCERES. 2020. „Technology, nature’s appropriation and capital accumulation in modern agriculture”. Current Opinion in Environmental Sustainability 45: 1–9.
  • [10] HAMBIR P., N. JOSHI, P. KARANDE, A. KOLHE. 2019. „Automatic Weighing and Packaging Machine”. International Research Journal of Engineering and Technology (IRJET) 7(5): 2395–0072.
  • [11] KLERKX L., E. JAKKU, P. LABARTHE. 2019.„A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda”. NJAS – Wageningen Journal of Life Sciences 90–91: 100315.
  • [12] KLERKX L., D. ROSE. 2020. „Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways?”. Global Food Security 24: 100347.
  • [13] LANZ B., S. DIETZ, T. SWANSON. 2018. „The Expansion of Modern Agriculture and Global Biodiversity Decline: An Integrated Assessment”. Ecological Economics 144: 260–277.
  • [14] LAURETT R., A. PAÇO, E.W. MAINARDES. 2020. „Measuring sustainable development, its antecedents, barriers and consequences in agriculture: An exploratory factor analysis”. Environmental Development, in press: 100583.
  • [15] LEZOCHE M., J.E. HERNANDEZ, M. DEL MAR EVA ALEMANY DÍAZ, H. PANETTO, J. KACPRZYK. 2020. „Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture”. Computers in Industry 117: 103187.
  • [16] LI X., D. WANG, M. LI. 2020. „Convenience analysis of sustainable E-agriculture based on blockchain technology”. Journal of Cleaner Production 271: 122503.
  • [17] LWIN HY., UHM. HTAY. 2019. „Design and Simulation of Automated Packaging machine Process Control by Using PLC”. International journal of trend in scientific research and development (IJTSRD) 3(5): 1423–1426.
  • [18] Manter. Weighing Packing EQUIPMENT. Available online: https://manter.com/ (accessed on 23 October 2020).
  • [19] Maszyny – Sorpac. Available online: https://sorpac.pl/ (accessed on 23 October 2020).
  • [20] OLA O., L. MENAPACE. 2020. „Smallholders’ perceptions and preferences for market attributes promoting sustained participation in modern agricultural value chains”. Food Policy, In press: 101962.
  • [21] PAJEWSKI T., A. MALAK-RAWLIKOWSKA., B. GOŁĘBIEWSKA. 2020. „Measuring regional diversification of environmental externalities in agri-culture and the effectiveness of their reduction by EU agri-environmental programs in Poland”. Journal of Cleaner Production 276: 123013.
  • [22] PANG J., X. LIU X, Q. HUANG. 2020. „A new quality evaluation system of soil and water conservation for sustainable agricultural development”. Agricultural Water Management 240: 106235.
  • [23] POKHAREL K.P., D.W. ARCHER, A.M. FEATH-ERSTONE. 2020. „The Impact of Size and Special-ization on the Financial Performance of Agricultural Cooperatives”. Journal of Cooperative Organization and Management 8(2): 100108.
  • [24] ROOBAVANNAN M., J. KANDASAMY, S. PANDE, S. VIGNESWARAN, M. SIVAPALAN. 2020. „Sustainability of agricultural basin develop-ment under uncertain future climate and economic conditions: A socio-hydrological analysis”. Ecological Economics 174: 106665.
  • [25] ROSE D.C., R. WHEELER, M. WINTER, M. LOBLEY, C.A. CHIVERS. 2021. „Agriculture 4.0: Making it work for people, production, and the planet”. Land Use Policy 100: 104933.
  • [26] SADOWSKI A., M.M. WOJCIESZAK-ZBIER-SKA, P. BEBA. 2021. „Territorial differences in agricultural investments cofinanced by the European Union in Poland”. Land Use Policy 100: 104934.
  • [27] SAMSUDIN M., M. SAFIT. 2015. “Development of cost effective PLC training kit by using arduino platform (PLCDUINO)”. Available online:http://eprints.uthm.edu.my/id/eprint/7551 /1 /MOHD_SAFIT_BlN_MOHD_SAMSU DIN.pdf (ac-cessed on 23 October 2020).
  • [28] SCOWN M.W., M.V. BRADY, K.A. NICHOLAS. 2020. „Billions in Misspent EU Agricultural Subsidies Could Support the Sustainable Development Goals”. One Earth 3(2): 237–250.
  • [29] Sparkfun. MicroMod. Available online: https://www.sparkfun.com/ (accessed on 23 October 2020).
  • [30] STĘPIEŃ S., B. CZYŻEWSKI, A. SAPA, M. BORYCHOWSKI, W. POCZTA, A. POCZTA-WAJDA. 2021. „Ecoefficiency of small-scale farming in Poland and its institutional drivers”. Journal of Cleaner Production 279: 123721.
  • [31] VERMUNT DA., S.O. NEGRO, FSJ. VAN LAER-HOVEN, PA. VERWEIJ, MP. HEKKERT. 2020.„Sustainability transitions in the agri-food sector: How ecology affects transition dynamics”. Environmental Innovation and Societal Transitions 36: 236–249.
  • [32] WANG L., W.V. VO, M. SHAHBAZ, A. AK. 2020.„Globalization and carbon emissions: Is there any role of agriculture value-added, financial development, and natural resource rent in the aftermath of COP21?”. Journal of Environmental Management 268: 110712.
  • [33] WHITCRAFT A.K., I. BECKER-RESHEF, C.O. JUSTICE, L. GIFFORD, A. KAVVADA, I. JAR-VIS. 2019. „No pixel left behind: Toward integrating Earth Observations for agriculture into the United Nations Sustainable Development Goals framework”. Remote Sensing of Environment 235: 111470.
  • [34] WOŹNIAK E., A. TYCZEWSKA, T. TWARDOWSKI. 2021. „Bioeconomy development factors in the European Union and Poland”. New Biotechnology 60: 2–8.
  • [35] ZHAI Z., J.F. MARTÍNEZ, V. BELTRAN, N.L. MARTÍNEZ. 2020. „Decision support systems for agriculture 4.0: Survey and challenges”. Computers and Electronics in Agriculture 170: 105256.
  • [36] ZHANG Q., B. PARMESWARAN, D.J. LEE. 2019. „Accelerating agricultural biomass utilization for sustainable development: The oeuvres of the 4th subject specialized conference of international bio-processing association”. Bioresource Technology 317: 124009.
  • [37] YU L., H. QIN, PA. XIANG. 2020. „Incentive mechanism of different agricultural models to agricultural technology information management system”. Sustainable Computing: Informatics and Systems 28: 100423.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d239a983-61f0-4e82-b0ad-1a2fe8b009c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.