PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time consumption in calculations of hydraulic and geometrical tortuosity in granular beds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tortuosity is one of the most elusive parameters of porous media due to its subjective estimation. Here, we compare two approaches for obtaining the tortuosity in granular porous media to investigate their capabilities and limitations. First, we determine the hydraulic tortuosity based on the calculated components of the velocity field obtained from flow simulations using the Lattice Boltzmann Method (LBM). Second, we directly determine the geometric tortuosity by making use of the Path Tracking Method (PTM) which only requires the geometric properties of the porous medium. In both cases, we apply the same geometrical structure which is a virtually generated 3D granular bed using the discrete element method consisting of 50 particles. Our results show that the direct PTM is much faster and more precise than the indirect approach based on the calculated velocity field. Therefore, PTM may provide a tool for calculating tortuosity for large 3D granular systems where indirect methods are limited due to the required computational power and time. While LBM considers various routes across the porous media implicitly, PTM identifies them explicitly. As a result, PTM requires a statistical post-processing. As an advantage, this can provide further information than just domain scale average values.
Rocznik
Tom
Strony
25--51
Opis fizyczny
Bibliogr. 51 poz., rys., wykr.
Twórcy
  • Katedra Mechaniki i Podstaw Konstrukcji Maszyn, Wydział Nauk Technicznych, Uniwersytet Warmińsko-Mazurski, ul. M. Oczapowskiego 11, 10-957 Olsztyn,
autor
  • Environmental Hydrogeology, Department of Earth Sciences, Utrecht University, Netherlands
autor
  • Environmental Hydrogeology, Department of Earth Sciences, Utrecht University, Netherlands
Bibliografia
  • Afkhami M., Hassanpour A., Fairweather M., Njobuenwu D.O. 2015. Fully coupled LES-DEM of particle interaction and agglomeration in a turbulent channel flow. Computers and Chemical Engineering, 78: 24-38.
  • Al-Arkawazi S., Marie C., Benhabib K., Coorevits P. 2017. Modeling the hydrodynamic forces between fluid-granular medium by coupling DEM-CFD. Chemical Engineering Research and Design, 117: 439-447.
  • Bear J. 1972. Dynamics of Fluids in Porous Media. Courier Dover Publications, New York.
  • Bhatnagar P.L., Gross E.P., Krook M. 1954. A model for collisional processes in gases I: small amplitudę processes in charged and neutral onecomponent system. Physical Review, 94(3): 511-524.
  • Carman P.C. 1937. Fluid Flow through Granular Beds. AIChE, 15: 150.
  • Catalano E. 2012. A pore- coupled hydromechanical model for biphasic granular media. Ph.D. Thesis, Grenoble University, France.
  • Chen F. 2009. Coupled Flow Discrete Element Method Application in Granular Porous Media using Open Source Codes. Ph.D. Thesis, University of Tennessee, Knoxville, USA.
  • Cieszko M. 2009. Description of anisotropic pore space structure of permeable materials based on Minkowski metric space. Arch. Mech., 61(6): 425-444.
  • Cieszko M., Kriese W. 2006. Description of tetragonal pore space structure of porous materials. Arch. Mech., 58(4-5): 477-488.
  • Cundall P.A., Strack O.D. 1979. A discrete element model for granular assemblies. Géotechnique, 29: 47-65.
  • Duda A., Koza Z., Matyka M. 2011. Hydraulic tortuosity in arbitrary porous media flow. Physical Review, E, 84: 036319.
  • Erath C. 2010. Coupling of the Finite Volume Method and the Boundary Element Method. Ph.D. Thesis, University Ulm, Germany.
  • Feng Y.T., Han K., Owen D.R.J. 2007. Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: Computational issues. International Journal for Numerical Methods in Engineering, 72: 1111-1134. Free Software Foundation. 2019. https://www.fsf.org/ (access: 10.02.2020).
  • Galindo-Torres S.A. 2013. A coupled Discrete Element Lattice Boltzmann Method for the simulation of fluid-solid interaction with particles of general shapes. Computer Methods in Applied Mechanics and Engineering, 265: 107-119.
  • Gharedaghloo B., Price J.S., Rezanezhad F., Quinton W.L. 2018. Evaluating the hydraulic and transport properties of peat soil using porenetwork modeling and X-ray micro computed tomography. Journal of Hydrology, 561: 494-508.
  • Komoróczi A., Abe S., Urai J.L. 2013. Meshless numerical modeling of brittle – viscous deformation: first results on boudinage and hydrofracturing using a coupling of discrete element method (DEM) and smoothed particle hydrodynamics (SPH). Computational Geosciences, 17(2): 373-390.
  • Koponen A., Kataja M., Timonen J. 1996. Tortuous flow in porous media. Phys. Rev. E, 54: 406.
  • Koponen A., Kataja M., Timonen J. 1997. Permeability and effective porosity of porous media. Phys. Rev. E, 56: 3319.
  • Lindner S. 2015. SiLibeads Glass beads Type S, Microglass beads. Product Data Sheet, Version V13. http://www.tecmos.com/wp-content/uploads/2018/05/SiLibeads-Type-S.pdf.
  • Mahabadi O.K. Lisjak A., He L., Tatone B.S.A., Kaifosh P., Grasselli G. 2016. Development of a New Fully-Parallel Finite-Discrete Element Code: Irazu. ARMA, 16: 516.
  • Marek M. 2014. CFD modelling of gas flow through a fixed bed of Raschig rings. Journal of Physics, Conference Series, 530: 012016.
  • Markauskas D., Kruggel-Emden H., Sivanesapillai R., Steeb H. 2017. Comparative study on mesh-based and mesh-less coupled CFD-DEM methods to model particle-laden flow. Powder Technology, 305: 78-88.
  • Markl M. 2015. Numerical Modeling and Simulation of Selective Electron Beam Melting Using a Coupled Lattice Boltzmann and Discrete Element Method. Ph.D. Thesis, Friedrich-Alexander-University Erlangen-Nuremberg, Germany.
  • Mayavi: 3D scientific data visualization and plotting in Python. 2020. MayaVi. https://docs.enthought.com/mayavi/mayavi/ (access: 10.02.2020).
  • Nabovati A., Sousa A.C.M. 2007. Fluid Flow Simulation in Random Porous Media at Pore Level Using Lattice Boltzmann Method. In: New Trends in Fluid Mechanics Research. Eds. F.G. Zhuang, J.C. Li. Springer, Berlin, Heidelberg.
  • Nordbotten J.M. 2014. Finite volume hydromechanical simulation in porous media. Water Resources Research, 50(5): 4379-4394.
  • Palabos. 2020. Universite de Geneve. http://www.palabos.org/ (access: 10.02.2020).
  • ParaView. 2020. http://www.paraview.org/ (access: 10.02.2020).
  • Qiu L.-C. 2015. A Coupling Model of DEM and LBM for Fluid Flow through Porous Media. Procedia Engineering, 102: 1520-1525.
  • Rojek J. 2007. Multiscale analysis using a coupled discrete/finite element model. Interaction and Multiscale Mechanics, 1(1): 1-31.
  • Sakai M. 2016. How Should the Discrete Element Method Be Applied in Industrial Systems? KONA Powder and Particle Journal, 33: 169-178.
  • Saomoto H., Katagiri J. 2015. Direct comparison of hydraulic tortuosity and electric tortuosity based on finite element analysis. Theoretical and Applied Mechanics Letters, 5(5): 177-180.
  • Sobieski W. 2009. Calculating tortuosity in a porous bed consisting of spherical particles with known sizes and distribution in space. Research report 1/2009, Winnipeg, Canada.
  • Sobieski W. 2016. The use of Path Tracking Method for determining the tortuosity field in a porous bed. Granular Matter, 18: 72.
  • Sobieski W., Dudda W., Lipiński S. 2016a. A new approach for obtaining the geometric properties of a granular porous bed based on DEM simulations. Technical Sciences, 19(2): 165-187.
  • Sobieski W., Lipiński S. 2016. PathFinder User’s Guide. University of Warmia and Mazury, Olsztyn.
  • Sobieski W., Lipiński S., Dudda W., Trykozko A., Marek M., Wiącek J., Matyka M., Gołembiewski J. 2016b. Granular porous media. University of Warmia and Mazury, Olsztyn.
  • Sobieski W., Zhang Q., Liu C. 2012. Predicting Tortuosity for Airflow Through Porous Beds Consisting of Randomly Packed Spherical Particles. Transport Porous Med., 93(3): 431-451.
  • Srivastava S., Yazdchi K., Luding S. 2012. Mesoscale dynamic coupling of finite- and discrete-element methods for fluid-particle interactions. Philosophical Transactions of the Royal Society A, 372(2021): 1-18.
  • Stránský J., Jirásek M. 2012. Open source FEM-DEM coupling. 18th International Conference Engineering Mechanics, Svratka, Czech Republic, May 14-17, Paper no 18, p. 1237-1251.
  • Sun W.C., Kuhn M.R., Rudnicki J.W. 2013. A multiscale DEM-LBM analysis on permeability evolutions inside a dilatant shear band. Acta Geotechnica, 8(5): 465-480.
  • Šmilauer V., Catalano E., Chareyre B., Dorofeenko S., Duriez J., Dyck N., Eliáš J., Er B., Eulitz A., Gladky A., Guo N., Jakob Ch., Kneib F., Kozicki J., Marzougui D., Maurin R., Modenese Ch., Scholtès L., Sibille L., Stránský J., Sweijen T., Thoeni K., Yuan Ch. 2020. Yade Documentation. 2nd Edition, after Release 2020-04-30.git-c3696f2. https://yade-dem.org/doc/Yade.pdf (access: 10.02.2020).
  • Trykozko A., Peszynska M., Dohnalik M. 2016. Modeling non-Darcy flows in realistic pore-scale proppant geometries. Computers and Geotechnics, 71: 352-360.
  • Villard P., Chevalier B., Le Hello B., Combe G. 2009. Coupling between finite and discrete element methods for the modelling of earth structures reinforced by geosynthetic. Computers and Geotechnics, 36(5): 709-717.
  • Wang P. 2014. Lattice Boltzmann Simulation of Permeability and Tortuosity for Flow through Dense Porous Media. Math. Prob. Eng., 694350.
  • Widuliński Ł., Kozicki J., Tejchman J. 2009. Numerical Simulations of Triaxial Test with Sand Using DEM. Archives of Hydro-Engineering and Environmental Mechanics, 56(3-4): 149-171.
  • Willert C.E., Gharib M. 1991. Digital particle image velocimetry. Experiments in Fluids, 10(4): 181-193.
  • Wu T.-R., Huang C.-J., Chuang M.-H., Wang C.-Y., C.-R. Chu C.-R. 2011. Dynamic coupling of multi-phase fluids with a moving obstacle. Journal of Marine Science and Technology, 19(6): 643-650.
  • Xiang J., Latham J.P., Vire A., Anastasaki E, Pain C.C. 2012. Coupled fluidity/y3d technology and simulation tools for numerical breakwater modelling. Coastal Engineering Proceedings, 33: 1-9.
  • Zeng Q., Yao J. 2015. Numerical Simulation of Fluid-Solid Coupling in Fractured Porous Media with Discrete Fracture Model and Extended Finite Element Method. Computation, 3: 541-557.
  • Zhao J., Shan T. 2013. Coupled CFD–DEM simulation of fluid – particle interaction in geomechanics, Powder Technology, 239: 248-258.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2394d52-c816-4475-821a-9ca05f3bfeaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.