PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rheological Properties of DNAN/HMX Melt-cast Explosives : Maximum Packing Density Calculation and Modified Viscosity Model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study of suspensions with high solid content and low viscosity has become a very active topic for melt-cast explosives, for both research and industry. Previous studies have described how the viscosity of high-solid-content suspensions can be decreased by optimizing the grade ratio, that is, increasing the particle packing density. This paper numerically simulates the maximum packing density (Φm) for different grade ratios at which the suspension viscosity approaches infinity, using the overlapping discrete element cluster method. According to this method, the shape of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) particles was modeled as a group of overlapping, rigidly connected hard spheres. The results showed that the numerical simulation value can be used as the real value of Φm for any grade ratio in engineering applications. The rheological properties of 2,4-dinitroanisole (DNAN)/HMX suspensions with various grade ratios of three HMX samples with different d50 values were investigated using a rotational viscometer over a range of mass solids content (ϕ = 20-75 wt.%) in the shear rate range of 0.1-100 s⁻¹. An empirical model incorporating the reduced solid content (Φ, equal to ϕ divided by Φm) and shear rate (γ) was modified to predict the relative viscosity of DNAN/HMX suspensions. This modified model has a strong correlation with the experimental data and can be used to accurately predict the viscosity of DNAN/HMX suspensions. In addition, the applicability of different classical models to DNAN/HMX suspensions is discussed.
Rocznik
Strony
326--359
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • Composite Explosive Research Department, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Composite Explosive Research Department, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Composite Explosive Research Department, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Composite Explosive Research Department, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
  • Composite Explosive Research Department, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
  • School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
Bibliografia
  • [1] Ravi, P.; Badgujar, D.M.; Gore, G.M.; Tewari, S.P; Sikder, A.K. Review on Melt Cast Explosives. Propellants Explos. Pyrotech. 2011, 36(5): 393-403; DOI: 10.1002/prep.201100047.
  • [2] Boddu, V.M.; Abburi, K.; Maloney, S.W.; Damavarapu, R. Thermophysical Properties of an Insensitive Munitions Compound, 2, 4-Dinitroanisole. J. Chem. Eng. Data. 2008, 53(5): 1120-1125; DOI: 10.1021/je7006764.
  • [3] Taylor, S.; Ringelberg, D.B.; Dontsova, K.; Daghlian, C.P.; Walsh, M.E.; Walsh, M.R. Insights Into the Dissolution and the Three-dimensional Structure of Insensitive Munitions Formulations. Chemosphere 2013, 93(9): 1782-1788; DOI: 10.1016/j.chemosphere.2013.06.011.
  • [4] Provatas, A.; Wall, C. Ageing of Australian DNAN Based Melt-cast Insensitive Explosives. Propellants Explos. Pyrotech. 2016, 41(3): 555-561; DOI: 10.1002/prep.201500315.
  • [5] Nevstad, G.O. Fragmentation of 40 mm Shell with 6 Different Compositions ‒4 melt Cast and 2 Press Filled. Norwegian Defence Research Establishment, Report FFI-rapport-2015/02324, 2015.
  • [6] Xu, G.G.; Xu, J.P. Rheological Properties of TNT/RDX Suspensions. (in Chinese) Acta Armamentarii 1991, 2: 71-74.
  • [7] Brousseau, P.; Thiboutot, S.; Ampleman, G. Behaviour of CL-20 in TNT-based Explosives. Proc. 38th Int. Annu. Conf. Fraunhofer ICT, Karlsruhe, Germany, 2007.
  • [8] Joshi, V.S.; Vadali, S.; Wasnik, R.D.; Jangid, S.K.; Maurya, M. Studies on Rheological Properties and Process Parameters of TNT Based Castable High Explosive Compositions. Sci. Technol. Energ. Mater. 2017, 78(4): 87-92.
  • [9] Singh, B.; Kaushik, D.R. Spheroidization of RDX and Its Effect on the Pourability of RDX/TNT Slurries. Def. Sci. J. 1989, 39(1): 95-98.
  • [10] Guillemin, J.P.; Brunet, L.; Bonnefoy, O.; Thomas, G. A Flow Time Model for Melt-cast Insensitive Explosive Process. Propellants Explos. Pyrotech. 2007, 32(3): 261-266; DOI: 10.1002/prep.200700028.
  • [11] Billon, H.H.; Parry, M.A. The Viscosity of TATB Types A and B Suspensions in Molten TNT: General Characteristics. Australia Materials Research Labs Ascot Vale, Report MRL-TR-91-24, 1991.
  • [12] Guillemin, J.P.; Menard, Y.; Brunet, L.; Bonnefoy, O.; Thomas, G. Development of a New Mixing Rheometer for Studying Rheological Behaviour of Concentrated Energetic Suspensions. J. Non-Newtonian Fluid Mech. 2008, 151(1-3): 136-144; DOI: 10.1016/j.jnnfm.2007.12.007.
  • [13] Sarangapani, R.; Ramavat, V.; Reddy, S.; Subramanian, P.; Sikder, A.K. Rheology Studies of NTO-TNT Based Melt-cast Dispersions and Influence of Particle-dispersant Interactions. Powder Technol. 2015, 273: 118-124; DOI: 10.1016/j.powtec.2014.12.013.
  • [14] Parry, M.A.; Billon, H.H. A Note on the Coefficient of Viscosity of Pure Molten 2,4,6-Trinitrotoluene (TNT). Rheol. Acta. 1988, 27(6): 661-663.
  • [15] Zerkle, D.K.; Núñez, M.P.; Zucker, J.M. Molten Composition B Viscosity at Elevated Temperature. J. Energ. Mater. 2016, 34(4): 368-383; DOI: 10.1080/07370652.2015.1102179.
  • [16] Pelletier, P.; Laroche, I.; Lavigne, D.; Cantin, F.; Brousseau, P.; Fung, V. Processing Studies of DNAN Based Melt-pour Explosive Formulations. Proc. Insensitive Munitions and Energetic Materials Technology Symp., Tucson, AZ, USA, 2009.
  • [17] Fung, V.; Ervin, M.; Alexander, B.; Patel, C.; Samuels, P. Development and Manufacture of an Insensitive Composition B Replacement Explosive IMX-104 for Mortar Applications. Proc. Insensitive Munitions and Energetic Materials Technology Symp., Munich, Germany, 2010.
  • [18] Johansen, Ø.H.; Nevstad, G.O.; Gjersøe, R.; Berg, A.; Granby, T.; Ødegaard, M. Insensitive Munitions-development and Qualification of New Melt-cast Formulations. Proc. Insensitive Munitions and Energetic Materials Technology Symp., Nashville, TN, USA, 2016.
  • [19] Davies, P.J.; Provatas, A. Characterisation of 2,4-Dinitroanisole: An Ingredient for Use in Low Sensitivity Melt Cast Formulations. Australia Defense Science and Technology Organization, Report DSTO-TR-1904, 2006.
  • [20] Meng, J.J.; Zhou, L.; Jin, D.Y.; Cao, S.T.; Wang, Q.H. Rheological Properties of DNAN/HMX Melt-cast Explosives. Chin. J. Energ. Mater. 2018, 26(8): 677-685.
  • [21] Zhu, D.L; Zhou, L.; Zhang, X.R. Rheological Behavior of DNAN/HMX MeltCast Explosives. Propellants Explos. Pyrotech. 2019, 44(12): 1583-1589; DOI: 10.1002/prep.201900117.
  • [22] Senapati, P.K.; Mishra, B.K.; Parida, A. Modeling of Viscosity for Power Plant Ash Slurry at Higher Concentrations: Effect of Solids Volume Fraction, Particle Size and Hydrodynamic Interactions. Powder Technol. 2010, 197(1-2): 1-8; DOI: 10.1016/j.powtec.2009.07.005.
  • [23] Farris, R.J. Prediction of the Viscosity of Multimodal Suspensions from Unimodal Viscosity Data. Trans. Soc. Rheol. 1968, 12(1): 281-301.
  • [24] Larrard, F.D.; Sedran, T. Mixture-proportioning of High-performance Concrete. Cem.Concr. Res. 2002, 32(11): 1699-1704; DOI: 10.1016/S0008-8846(02)00861-X.
  • [25] Cundall, P.A.; Strack, O.L. A Discrete Numerical Model for Granular Assemblies. Geotechnique 1979, 29(1): 47-65; DOI: 10.1680/geot.1979.29.1.47.
  • [26] Bowman, E.T.; Soga, K.; Drummond, W. Particle Shape Characterization Using Fourier Descriptor Analysis. Geotechnique 2001, 51(6): 545-554; DOI: 10.1680/geot.2001.51.6.545.
  • [27] Cho, G.-C.; Dodds, J.; Santamarina, J.C. Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands. J. Geotech. Geoenviron. 2006, 132(5): 591-602; DOI: 10.1061/(ASCE)1090-0241(2006)132:5(591).
  • [28] Ashmawy, A.K.; Sukumaran, B.; Hoang, A.V. Evaluating the Influence of Particle Shape on Liquefaction Behavior Using Discrete Element Method. Proc. 13th Int. Offshore Polar Engineering Conf., Honolulu, Hawaii, USA, 2003.
  • [29] Taghavi, R. Automatic Clump Generation Based on Mid-surface. Proc. 2nd Int. FLAC/DEM Symp., Melbourne, Australia, 2011.
  • [30] Cavendish, J.C.; Field, D.A.; Frey, W.H. An Approach to Automatic Three Dimensional Finite-Element Mesh Generation. Int. J. Numer. Meth. Eng. 1985, 8: 329-347; DOI: 10.1002/nme.1620210210.
  • [31] Kim, J.H.; Kim, H.G.; Lee, B.C.; Im, S. Adaptive Mesh Generation by Bubble Packing Method. Struct. Eng. Mech. 2003, 15(1): 135-149.
  • [32] Hoffman, R.L. Explanations for the Cause of Shear Thickening in Concentrated Colloidal Suspensions. J. Rheol. 1998, 42(1): 111-123; DOI: 10.1122/1.550884.
  • [33] Stickel, J.J.; Powell, R.L. Fluid Mechanics and Rheology of Dense Suspensions. Annu. Rev. Fluid. Mech. 2005, 37(1): 129-149; DOI: 10.1146/annurev.fluid.36.050802.122132.
  • [34] Servais, C.; Jones, R.; Roberts, I. The Influence of Particle Size Distribution on the Processing of Food. J. Food. Eng. 2002, 51(3): 201-208; DOI: 10.1016/S0260-8774(01)00056-5.
  • [35] McGeary, R.K. Mechanical Packing of Spherical Particles. J. Am. Ceram. Soc. 1961, 44(10): 513-522; DOI: 10.1111/j.1151-2916.1961.tb13716.x.
  • [36] Lee, D.I. Packing of Spheres and Its Effect on the Viscosity of Suspensions. J. Paint Techno. 1970, 42(550): 579-584.
  • [37] Metzner, A.B. Rheology of Suspensions in Polymeric Liquids. J. Rheol. 1985, 29(6): 739-775; DOI: 10.1122/1.549808.
  • [38] Maron, S.H.; Pierce, P.E. Application of Ree-Eyring Generalized Flow Theory to Suspensions of Spherical Particle. J. Colloid. Sci. 1956, 11(1): 80-95; DOI: 10.1016/0095-8522(56)90023-X.
  • [39] Eilers, H. The Viscosity-Concentration Dependence of Colloidal Systems in Organic Solvents. (in German) Kolloid-Zeitschrift. 1943, 102(2): 154-169.
  • [40] Krieger, I.M.; Dougherty, T.J. A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres. Trans. Soc. Rheol. 1959, 3(1): 137-152; DOI: 10.1122/1.548848.
  • [41] Chong, J.S.; Christiansen, E.B.; Baer, A.D. Rheology of Concentrated Suspensions. J. Appl. Polym. Sci. 1971, 15(8): 2007-2021; DOI: 10.1002/app.1971.070150818.
  • [42] Nzihou, A.; Attias, L.; Sharrock, P.; Ricard, A. A Rheological, Thermal and Mechanical Study of Bone Cement – from a Suspension to a Solid Biomaterial. Powder Technol. 1998, 99(1): 60-69; DOI: 10.1016/S0032-5910(98)00091-6.
  • [43] Liu, D.-M. Particle Packing and Rheological Property of Highly-concentrated Ceramic Suspensions: φm Determination and Viscosity Prediction. J. Mater. Sci. 2000, 35(21): 5503-5507; DOI: 10.1023/A:1004885432221.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d23703e4-e768-4136-b492-7939ae9afd9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.