PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On bivariate fractal interpolation for countable data and associated nonlinear fractal operator

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fractal interpolation has been conventionally treated as a method to construct a univariate continuous function interpolating a given finite data set with the distinguishing property that the graph of the interpolating function is the attractor of a suitable iterated function system. On the one hand, attempts have been made to extend the univariate fractal interpolation from a finite data set to a countably infinite set. On the other hand, fractal interpolation in higher dimensions, particularly the theory of fractal interpolation surfaces (FISs), has received increasing attention for more than a quarter century. This article targets a twofold extension of the notion of fractal interpolation by providing a general framework to construct FISs for a prescribed set consisting of countably infinite data on a rectangular grid. By using this as a crucial tool, we obtain a parameterized family of bivariate fractal functions simultaneously interpolating and approximating a prescribed bivariate continuous function. Some elementary properties of the associated nonlinear (not necessarily linear) fractal operators are established, thereby allowing the interaction of the notion of fractal interpolation with the theory of nonlinear operators.
Wydawca
Rocznik
Strony
art. no. 20240014
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
  • Department of Mathematics, IIT Delhi, New Delhi, 110016, India
  • Department of Mathematics and Computer Science, Lucian Blaga University of Sibiu, Sibiu, Romania
  • Department of Mathematics, IIT Delhi, New Delhi, 110016, India
Bibliografia
  • [1] M. F. Barnsley, Fractal functions and interpolation, Constr. Approx. 2 (1986), 303–329.
  • [2] J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713–747.
  • [3] M. F. Barnsley, Fractals Everywhere, Academic Press, Orlando, Florida, 1988.
  • [4] A. Deniz and Y. Özdemir, Graph-directed fractal interpolation functions, Turkish J. Math. 41 (2017), 829–840.
  • [5] D.-C. Luor, Fractal interpolation functions with partial self similarity, J. Math. Anal. Appl. 464 (2018), no. 1, 911–923.
  • [6] P. R. Massopust, Non-stationary fractal interpolation, Mathematics 7 (2019), no. 8, 14 pp.
  • [7] P. R. Massopust, Fractal interpolation over nonlinear partitions, Chaos Solitons Fractals 162 (2022), 112503.
  • [8] R. Miculescu, A. Mihail, and C. M. Pacurar, A fractal interpolation scheme for a possible sizeable set of data, J. Fractal Geom. 9 (2022), no. 3/4, DOI: https://doi.org/10.4171/JFG/117.
  • [9] R. Miculescu, A. Mihail, and C. M. Pacurar, Interpolation type iterated function systems, J. Math. Anal. Appl. 519 (2023), no. 1, 126747.
  • [10] S. Ri, A new nonlinear fractal interpolation function, Fractals 25 (2017), no. 6, 1750063.
  • [11] H-Y. Wang and J-S. Yu, Fractal interpolation functions with variable parameters and their analytical properties, J. Approx. Theory 175 (2013), 1–18.
  • [12] P. R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, London, 2nd ed., 2016.
  • [13] M. A. Navascués, Fractal polynomial interpolation, Z. Anal. Anwend. 25 (2005), no. 2, 401–418.
  • [14] M. A. Navascués, Fractal approximation, Complex Anal. Oper. Theory 4 (2010), no. 4, 953–974.
  • [15] S. Chen, The non-differentiability of a class of fractal interpolation functions, Acta Math. Sci. 19 (1999), no. 4, 425–430.
  • [16] P. Viswanathan, A. K. B. Chand, and M. A. Navascués, Fractal perturbation preserving fundamental shapes: Bounds on the scale factors, J. Math. Anal. Appl. 419 (2014), 804–817.
  • [17] M. A. Navascués, Fractal trigonometric approximation, Electron. Trans. Numer. Anal. 20 (2005), 64–74.
  • [18] P. Viswanathan and A. K. B. Chand, Fractal rational functions and their approximation properties, J. Approx. Theory 185 (2014), 31–50.
  • [19] P. Viswanathan and M. A. Navascués, A fractal operator on some standard spaces of functions, Proc. Edinb. Math. Soc. 60 (2017), 771–786.
  • [20] A. K. B. Chand and G. P. Kapoor, Hidden variable bivariate fractal interpolation surfaces, Fractals 11 (2003), 277–288.
  • [21] L. Dalla, Bivariate fractal interpolation functions on grids, Fractals 10 (2002), 53–58.
  • [22] Z. Feng, Variation and Minkowski dimension of fractal interpolation surfaces, J. Math. Anal. Appl. 176 (1993), 561–586.
  • [23] J. S. Geronimo and D. Hardin, Fractal interpolation surfaces and a related 2D multiresolution analysis, J. Math. Anal. Appl. 176 (1993), 561–586.
  • [24] R. Malysz, The Minkowski dimension of the bivariate fractal interpolation surfaces, Chaos Solitons Fractals 27 (2006), 27–50.
  • [25] P. R. Massopust, Fractal surfaces, J. Math. Anal. Appl. 151 (1990), 275–290.
  • [26] W. Metzer and C. H. Yun, Construction of fractal interpolation surfaces on rectangular grids, Internat. J. Bifur. Chaos 20 (2010), 4079–4086.
  • [27] H. Xie and H. Sun, The study on bivariate fractal interpolation functions and creation of fractal interpolated surfaces, Fractals 5 (1997), 625–634.
  • [28] N. Zhao, Construction and application of fractal interpolation surfaces, Vis. Comput. 12 (1996), 132–146.
  • [29] P. Bouboulis and L. Dalla, A general construction of fractal interpolation functions on grids of n, European J. Appl. Math. 18 (2007), no. 4, 449–476.
  • [30] D. Hardin and P. R. Massopust, Fractal interpolation functions from n into m and their projections, Z. Anal. Anwend. 12 (1993), 535–548.
  • [31] H.-J. Ruan and Q. Xu, Fractal interpolation surfaces on rectangular grids, Bull. Aust. Math. Soc. 91 (2015), 435–446.
  • [32] S. Jha, A. K. B. Chand, M. A. Navascués, and A. Sahu, Approximation properties of bivariate α-fractal functions and dimension results, Appl. Anal. 100 (2020), 3426–3444, DOI: https://doi.org/10.1080/00036811.2020.1721472.
  • [33] S. Verma and P. Viswanathan, A fractal operator associated with bivariate fractal interpolation functions on rectangular grids, Results Math. 75 (2020), no. 28, 26 pp.
  • [34] N. A. Secelean, The existence of the attractor of countable iterated function systems, Mediterr. J. Math. 9 (2012), no. 1, 61–79.
  • [35] N. A. Secelean, Countable Iterated Function Systems, LAP Lambert Academic Publishing, Saarbrücken, Germany, 2013.
  • [36] N. A. Secelean, The fractal interpolation for countable systems of data, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 14 (2003), 11–19.
  • [37] K. K. Pandey and P. Viswanathan, On bivariate fractal interpolation for countable data and associated nonlinear fractal operator, 2020, arXiv:2010.0546.
  • [38] H. M. Riedl and G. F. Webb, Relative boundedness conditions and the perturbations of nonlinear operators, Czechoslovak Math. J. 24 (1974), 584–597.
  • [39] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1980.
  • [40] B. S. Thomson, J. B. Bruckner, and A. M. Bruckner, Elementary Real Analysis, Prentice-Hall, New Jersey, USA, 2001.
  • [41] P. Viswanathan, Fractal approximation of a function from a countable sample set and associated fractal operator, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 1, 32.
  • [42] N. Dunford and J. T. Schwartz, Linear Operators, Part 1: General Theory, John Wiley & Sons, New York, 1988.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d23465a6-de2f-4ea7-b92d-eb032fb9de1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.