PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of polynomial tensor interpolation for technical tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of this paper is a new formula of tensor interpolation by the polynomial of two variables. The formulas for interpolating polynomial coefficients are obtained using the Kronecker tensor product of matrices. The mathematical model for the diffusion process is presented. This paper is focused on determining the optimal parameters for this process by polynomial tensor interpolation of the obtained research results.
Rocznik
Strony
17--24
Opis fizyczny
Bibliogr. 9 poz., rys., tab.
Twórcy
autor
  • Institute of Mathematics, Czestochowa University of Technology Czestochowa, Poland
  • Institute of Mathematics, Czestochowa University of Technology Czestochowa, Poland
  • Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Czestochowa, Poland
Bibliografia
  • [1] Graham, A. (1981). Kronecker Products and Matrix Calculus with Applications. Ellis Horwood Ltd.
  • [2] Kincaid, D., & Chnej, W. (2002). Numerical Analysis, Mathematics of Scientific Computing. The University of Texas at Austin.
  • [3] Biernat, G., & Ciekot, A. (2009). The polynomial tensor interpolation. Arithmetical case. Scientific Research of the Institute of Mathematics and Computer Science Czestochowa University of Technology, 1(8), 7-11.
  • [4] Frączek, T., Olejnik, M., Knapinski, M., & Biernat, G. (2010). Tensor interpolation of tribological wear in ionnitriding of 316L steel. Solid State Phenomena, 165, 43-49.
  • [5] Olejnik, M. (2011). Niskotemperaturowe i krótkookresowe azotowanie jarzeniowe stali austenicznej X2CrNiMo 17012-2, PhD Thesis, Czestochowa (in Polish).
  • [6] Biernat, G., & Ciekot, A. (2007). The polynomial interpolation for technical experiments. Scientific Research of the Institute of Mathematics and Computer Science Czestochowa University of Technology, 1(6), 19-22.
  • [7] Gasca, M., & Sauer, T. (2000). On the history of multivariate polynomial interpolation. Journal of Computational and Applied Mathematics, 122, 23-35.
  • [8] Thomas, D.H. (1976). A natural tensor product interpolation formula and pseudoinverse of a matrix. Linear Algebra and Its Applications, 13, 239-250.
  • [9] Kilicman, A., & Al Zhour, Z.A.A. (2007). Kronecker operational matrices for fractional calculus and some applications. Applied Mathematics and Computation, 187, 250-265.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2340e99-5124-4bc9-98f6-f1e32a37b912
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.