PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing rheological muscle models with stochastic processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biological musculoskeletal systems operate under variable conditions. Muscle stiffness, activation signals, and loads change during each movement. The presence of noise and different harmonic components in force production significantly influences the behaviour of the muscular system. Therefore, it is essential to consider these factors in numerical simulations.
Rocznik
Opis fizyczny
Bibliogr. 43 poz., wykr.
Twórcy
  • Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, Lodz, Poland
  • Mechanics and Mechatronics Department, Mechanical Engineering Faculty, Gdansk University of Technology, Gdansk, Poland
  • Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, Lodz, Poland
  • Department of Mechanics and Vibroacoustics, Faculty of Mechanical Engineering and Robotics, AGH University of Cracow, Cracow, Poland
Bibliografia
  • [1] Amanović Đ., Milošević M., Mudrić R., Dopsaj M., Perić D., Modeling variability of the assigned level of force during isometric contractions of the arms extensor muscles in untrained males, Facta universitatis - series: Physical Education and Sport, 2006, 4(1):35-48,
  • [2] Awrejcewicz J., Kudra G., Zagrodny B., Nonlinearity of muscle stiffness, Theoretical and Applied Mechanics Letters, 2012, 2(5):053001, DOI: 10.1063/2.1205301
  • [3] Barański R., Stability of the EMG Signal Level Within a Six-Day Measuring Cycle, In: Arkusz K, Będziński R, Klekiel T, Piszczatowski S, eds. Biomechanics in Medicine and Biology, Advances in Intelligent Systems and Computing, Springer International Publishing, 2019:125-137., DOI: 10.1007/978-3-319-97286-2_12
  • [4] Bolus N.B., Jeong H.K., Blaho B.M., Safaei M., Young A.J., Inan O.T., Fit to Burst: Toward Noninvasive Estimation of Achilles Tendon Load Using Burst Vibrations, IEEE Transactions on Biomedical Engineering, 2021, 68(2):470-481, DOI: 10.1109/TBME.2020.3005353
  • [5] Chaparro-Cárdenas S.L., Castillo-Castañeda E., Lozano-Guzmán A.A., Zequera M., Gallegos-Torres R.M., Ramirez-Bautista J.A., Characterization of muscle fatigue in the lower limb by sEMG and angular position using the WFD protocol, Biocybernetics and Biomedical Engineering, 2021, 41(3):933-943, DOI: 10.1016/j.bbe.2021.06.003
  • [6] Churchland M.M., Afshar A., Shenoy K.V., A central source of movement variability, Neuron, 2006, 52(6):1085-1096, DOI: 10.1016/j.neuron.2006.10.034
  • [7] De Groote F., Kinney A.L., Rao A.V., Fregly B.J., Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem, Ann Biomed Eng, 2016, 44(10):2922-2936, DOI: 10.1007/s10439-016-1591-9
  • [8] Dideriksen J.L., Negro F., Enoka R.M., Farina D., Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness, J Neurophysiol, 2012, 107(12):3357-3369, DOI: 10.1152/jn.00938.2011
  • [9] Esmaeili J., Maleki A., Muscle coordination analysis by time-varying muscle synergy extraction during cycling across various mechanical conditions, Biocybernetics and Biomedical Engineering, 2020, 40(1):90-99, DOI: 10.1016/j.bbe.2019.10.005
  • [10] Fuglevand A.J., Winter D.A., Patla A.E., Models of recruitment and rate coding organization in motor-unit pools, J Neurophysiol, 1993, 70(6):2470-2488, DOI: 10.1152/jn.1993.70.6.2470
  • [11] Galetin N., Cvetković M., Ujsasi D., Čokorilo N., Andrašić S., Lazarević M., Effects of Static Stretching of Various Durations on The Vertical Jump Among Female Volleyball Players, Facta Universitatis, Series: Physical Education and Sport, 2017, 15(1):207-217,
  • [12] Hamilton A., Jones K.E., Wolpert D.M., The scaling of motor noise with muscle strength and motor unit number in humans, Exp Brain Res, 2004, 157(4):417-430, DOI: 10.1007/s00221-004-1856-7
  • [13] Hirashima M., Oya T., How does the brain solve muscle redundancy? Filling the gap between optimization and muscle synergy hypotheses, Neurosci Res, 2016, 104:80-87, DOI: 10.1016/j.neures.2015.12.008
  • [14] Jalal N., Gracies J.-M., Zidi M., Mechanical and microstructural changes of skeletal muscle following immobilization and/or stroke, Biomech Model Mechanobiol, 2020, 19(1):61-80, DOI: 10.1007/s10237-019-01196-4
  • [15] Jan C., Piotr Krutki., Variability and Plasticity of Motor Unit Properties in Mammalian Skeletal Muscle, Biocybernetics and Biomedical Engineering, 2012, 32(4):33-45, DOI: 10.1016/S0208-5216(12)70047-5
  • [16] Jones K.E., Hamilton A.F., Wolpert D.M., Sources of signal-dependent noise during isometric force production, J Neurophysiol, 2002, 88(3):1533-1544, DOI: 10.1152/jn.2002.88.3.1533
  • [17] Jotta B., Garcia M.A.C., Pino A.V., De Souza M.N., Characterization of the mechanomyographic signal of three different muscles and at different levels of isometric contractions, Acta of Bioengineering and Biomechanics; 04/2015; ISSN 1509-409X, Published online 2015, DOI: 10.5277/ABB-00181-2014-02
  • [18] Kocur P., Piwińska I., Goliwąs M., Adamczewska K., Assessment of myofascial stiffness of flexor digitorum superficialis muscles in rock climbers, Acta Bioeng Biomech, 2021, 23(2), DOI: 10.37190/ABB-01746-2020-01
  • [19] Kopeć K., Bereza P., Sobota G., Hajduk G., Kusz D., The electromyographic activity characteristics of the gluteus medius muscle before and after total hip arthroplasty, Acta Bioeng Biomech, 2021, 23(1), DOI: 10.37190/ABB-01753-2020-02
  • [20] Latash M., Fundamentals of Motor Control - 1st Edition, Academic Press, 2012, Accessed April 20, 2021. https://www.elsevier.com/books/fundamentals-of-motorcontrol/latash/978-0-12-415956-3
  • [21] Lu T., Shi Z., Shi Q., Wang T.J., Bioinspired bicipital muscle with fiber-constrained dielectric elastomer actuator, Extreme Mechanics Letters, 2016, 6:75-81, DOI: 10.1016/j.eml.2015.12.008
  • [22] Lyons R., Understanding Digital Signal Processing, 3rd edition. Pearson, 2010,
  • [23] Marcucci L., Reggiani C., Natali A.N., Pavan P.G., From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers, Biomech Model Mechanobiol, 2017, 16(6):1833-1843, DOI: 10.1007/s10237-017-0922- 6
  • [24] Milutinovic A., Copic N., Petrovic A., Dabovic M., Janicijevic D., Muscle strength capacities in elite football players after anterior cruciate ligament reconstruction, Acta Bioeng Biomech, 2021, 23(2), DOI: 10.37190/ABB-01800-2021-02
  • [25] Prilutsky B.I., Zatsiorsky V.M., Optimization-Based Models of Muscle Coordination, Exerc Sport Sci Rev, 2002, 30(1):32,
  • [26] Ravera E.P., Crespo M.J., Catalfamo Formento P.A., Assessment of the energy-related cost function over a range of walking speeds, Biomech Model Mechanobiol, 2019, 18(6):1837-1846, DOI: 10.1007/s10237-019-01180-y
  • [27] Riccobelli D., Ambrosi D., Activation of a muscle as a mapping of stress–strain curves, Extreme Mechanics Letters, 2019, 28:37-42, DOI: 10.1016/j.eml.2019.02.004
  • [28] Sharif Razavian R., Mehrabi N., McPhee J., A model-based approach to predict muscle synergies using optimization: application to feedback control, Front Comput Neurosci, 2015, 9, DOI: 10.3389/fncom.2015.00121
  • [29] Siermiński A., Inverse optimization problem of interacting skeletal muscles, Studies and Monographs of the Academy of Physical Education in Wrocław, 2007, Accessed April 21, 2021. https://zasobynauki.pl/zasoby/odwrotne-zadanie-optymalizacji-dlawspoldzialajacych-miesni-szkieletowych,45851/
  • [30] Slifkin A.B., Newell K.M., Noise, information transmission, and force variability, J Exp Psychol Hum Percept Perform, 1999, 25(3):837-851, DOI: 10.1037//0096-1523.25.3.837
  • [31] Soderberg G.L., Kinesiology: Application to Pathological Motion, Subsequent edition. Williams & Wilkins, 1997,
  • [32] Teklemariam A., Hodson-Tole E., Reeves N.D., Cooper G., A micromechanical muscle model for determining the impact of motor unit fiber clustering on force transmission in aging skeletal muscle, Biomech Model Mechanobiol, 2019, 18(5):1401-1413, DOI: 10.1007/s10237-019-01152-2
  • [33] Trevino M.A., Herda T.J., The effects of training status and muscle action on muscle activation of the vastus lateralis, Acta of Bioengineering and Biomechanics; 04/2015; ISSN 1509-409X, Published online 2015, DOI: 10.5277/ABB-00221-2014-03
  • [34] Ture Savadkoohi A., Lamarque C.-H., Goossaert C., Nonlinear passive tremor control of human arm, Mechanical Systems and Signal Processing, 2021, 146:107041, DOI: 10.1016/j.ymssp.2020.107041
  • [35] Vilimek M., An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces, Acta of Bioengineering and Biomechanics; 03/2014; ISSN 1509- 409X, Published online 2014, DOI: 10.5277/ABB140314
  • [36] Wang Y., Zhu J., Artificial muscles for jaw movements, Extreme Mechanics Letters, 2016, 6:88-95, DOI: 10.1016/j.eml.2015.12.007
  • [37] Wierzcholski K.C., Hip joint lubrication after injury in stochastic description of optimum standard deviations, Acta of Bioeng and Biomech, 2005, 7(2):29-39,
  • [38] Wojnicz W., Wittbrodt E., Application of muscle model to the musculoskeletal modeling, Acta of Bioengineering and Biomechanics; 03/2012; ISSN 1509-409X, Published online 2012, DOI: 10.5277/ABB120305
  • [39] Wojnicz W., Zagrodny B., Ludwicki M., Awrejcewicz J., Wittbrodt E., A two dimensional approach for modelling of pennate muscle behaviour, Biocybernetics and Biomedical Engineering, 2017, 37(2):302-315, DOI: 10.1016/j.bbe.2016.12.004
  • [40] Zagrodny B., Ludwicki M., Wojnicz W., Mrozowski J., Awrejcewicz J., Cooperation of mono- and bi-articular muscles: human lower limb, J Musculoskelet Neuronal Interact, Published online 2018,
  • [41] Zagrodny B., Wojnicz W., Ludwicki M., Awrejcewicz J., Could Thermal Imaging Supplement Surface Electromyography Measurements for Skeletal Muscles?, IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-10, DOI: 10.1109/TIM.2020.3023216
  • [42] Zajac F.E., Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control, Crit Rev Biomed Eng, 1989, 17(4):359-411,
  • [43] Zhang F., Sun K., Tensorial biometric signal recognition based on multilinear PCA plus GTDA, Advances in Modelling and Analysis B, 2016, 59(1):91-112.
Uwagi
Brak numeracji stron
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d22f900b-00f2-4e13-8626-556a447d3371
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.