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Abstract 

Purpose 

Biological musculoskeletal systems operate under variable conditions. Muscle stiffness, 

activation signals, and loads change during each movement. The presence of noise and different 

harmonic components in force production significantly influences the behaviour of the 

muscular system. Therefore, it is essential to consider these factors in numerical simulations. 

Methods 

This study aims to develop a rheological mathematical model that accurately represents 

the behaviour of the actual muscular system, taking into account the phenomena described by 

the stochastic model in the form of stationary processes. Stochastic disturbances were applied 

to simulate variable conditions, in which musculo-skeletal system operates. Numerical 

simulations were conducted for two dynamic tasks, where we calculated the internal force 

generated by the system (task 1), and its displacement (task 2). These simulations were 

performed using two different datasets sourced from the literature. In the next step, simulation 

results were compared with our own experiment. 

Results 

 The considered mathematical model was successfully tuned and compared with both 

the literature data and our own experimental results. During the analysis of muscle model 

behavior, depending on the data source for model tuning, we observed distinct frequency 

characterized by a sine-type pattern and a higher frequencies marked by stochastic 

perturbations.  

Conclusions 

The proposed model can be customized to simulate systems of varying sizes, levels of 

maximum voluntary contraction, and the effects of perturbations, closely resembling real-world 

data. The presented approach can be applied to simulate the behaviour of the musculoskeletal 

system as well as of individual muscles. 
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Introduction 
Biological systems operate in variable conditions [12], [20], [30], [37], adapting to both 

internal factors (e.g., perturbations and/or noise originating from the neural or muscular systems 

of the human body) and external factors (e.g., perturbations from the environment). Internal 



 

 

factors arise due to the variability in the activation of muscle motor units caused by stochastic 

discharge from motor neurons [8], [12], [43], the coordination of agonist and antagonist 

muscular groups, body core, body shell and muscle temperature [11], [41], musculoskeletal 

disorders or pain [5], [15] or injury [19], [24], as well as noise and sensory thresholds of the 

body sensors [20], or the level of muscle contraction [1]. External factors occur due to the 

influence of environmental temperature, variations in applied external mechanical loads [4], 

[20], [34], the history of muscle loading [11], types of sports performed [18] and mechanical 

vibrations that are acting on the human body. Likely, this list is not exhaustive; however, we 

can assume that not all factors are known. Nonetheless, all types of perturbations act in various 

and frequently unpredictable combinations, exerting an influence on both movement and the 

stability of force production. 

Considering the variability of the force produced by the musculoskeletal system, one 

can agree that this variability depends on factors such as muscle size, the level of maximal 

voluntary force contraction (MVC), the individual's sex, age, and their physical and mental 

condition [8], [10]–[12], [14], [16], [17], [27], [30], [33]. Furthermore, these perturbations can 

lead to movement inaccuracies [6], [12], which are observed during quasi-repetitive cycles of 

the musculoskeletal system when attempting to follow the same movement trajectory [6], [9], 

[20], [40]. This results in an inability to replicate repeat the movement perfectly, maintaining 

the same trajectory, speed, acceleration or level of force/torque production [33]. For instance, 

in the paper [3], it was reported that even EMG characteristics for the same task changed over 

time, even for the same individual, after a few hours of rest. 

From a mechanical standpoint, the musculoskeletal-neural system is considered 

redundant [20], [25]. This implies that the set of inverse dynamics equations describing the 

movement of this system is insufficient to yield a unique solution [40]. To find a solution, it is 

necessary to consider a group of admissible trajectories that adhere to physiological constraints 

[13]. However, it is worth noting that similar movements of body segments are typically 

executed using different muscular activation patterns in successive cycles [12], [16], which 

makes the problem even more challenging. 

Various hypotheses exist to explain the strategies chosen by living species to execute 

specific movements. From a mathematical perspective, the inverse dynamics problem is often 

resolved using optimization approaches, such as minimizing locomotion energetic costs [12], 

[26], [27], optimizing muscle stress and dynamic parameters [34], [36], [40], optimizing 



 

 

different cost functions [7], [12], [29], and/or considering muscle synergy [21], [28]. These 

methods help limit the range of potential solutions created by the mathematical equations. 

Measurements of forces and torques in musculoskeletal systems reveal that during the 

isometric contraction of muscles, one can observe quasi-periodic lower and higher frequency 

oscillations in force and torque. These oscillations lead to variability in force and torque, which 

is also dependent on the level of maximal voluntary contraction (MVC) [17]. According to 

paper [30], this force variability occurs across all examined levels of isometric contraction (5%, 

35%, 65%, and 95% of MVC) in the upper limb muscles over a specific time interval, with the 

most significant variability observed at 95% of MVC. Notably, the oscillations in force 

variability are minimized at the 35% MVC level. The authors of this the aforementioned 

publication also identify pointed out that the global maximum power in the power spectrum is 

located at around 1.24 Hz (absolute power). In the case of proportional power, it exhibits slight 

variations based on the MVC level, with an additional local maximum at 7 Hz (at 35% of MVC). 

It's worth emphasizing that the results of this analysis were presented for the first 30 bands 

(spectrum in the range of 0 - 11.72 Hz, with a spectral resolution of 0.39 Hz, calculated as 

100 Hz / 256). This choice was based on the observation that most of the signal energy is 

concentrated within this frequency range. The authors also present simulation results obtained 

using two different types of signals, namely white Gaussian noise and sine waves. Additionally, 

they provide values for the approximate entropy parameter (ApEn). 

The paper [8] presents experimental results of muscle examination during “steady 

contractions”, including both qualitative and quantitative analyses. It should be emphasized that 

the authors conducted in vivo measurements by testing groups of muscles rather than isolated 

individual muscles. 

From a mechanical perspective, the need to consider broadband noise and different 

harmonic components is evident from the results published in [12], [30]. This requirement 

arises due to the characteristics of force produced by contracting muscle groups under the 

control of the nervous system. At the motor unit level it is hypothesized that higher-frequency 

noise is generated by ”an unfused contraction and timelocked to each motor neuron spike”, 

while lower-frequency noise results from the stochastic discharge of motor neurons [12]. The 

imposed influence of both higher and lower frequency noises can lead to variability in force 

production during voluntary muscle contraction. Additionally, it may reduce the precision and 

repeatability of movements. Some studies indicate that a stochastic component is present in 

force and surface electromyography (EMG) measurements during musculoskeletal system 



 

 

contractions. Furthermore, this stochastic component is significantly influenced by the 

individual physiological factors of the examined person. For instance, in the paper [3], it was 

reported that EMG characteristics for the same task changed over time, even for the same 

individual, after a few hours of rest.  

In the literature, there are reports dedicated to numerical modelling of the muscle system 

using various methods, including the finite element method [23], [32], as well as rheological 

approaches [38] such as Hill-type muscle models (for fusiform muscles) and Hill-Zajac-type 

muscle models (for pennate muscles) [39], [42]. However, the reported rheological 

implementations do not take into account variable stochastic perturbations of the involved 

mechanical properties. Assuming that these variable stochastic perturbations reflect both 

internal and external influences, we hypothesize that incorporating these perturbations into 

mechanical properties would provide a more accurate description of the behaviour of 

musculoskeletal models [12], [20], [35], [39]. 

The aim of this study was to develop an enhanced rheological model of the 

musculoskeletal system by incorporating a stochastic model in the form of stationary processes. 

The scope of this study encompassed the modelling of quasi-isometric contractions and 

experimental verification. 

Materials and Methods 
Numerical simulations 

The rheological model was derived based on the assumptions presented in [39] and took 

into consideration the non-linear damping and stiffness characteristics that describe the 

mechanical properties of the musculoskeletal system (see Fig. 1). 

 
Fig. 1.  Considered rheological model, where Kw, Kz – stiffness of active and passive tissues, 

Cw, Cz – damping of active and passive tissues respectively, mw, mz – mass of active and 

passive tissues, xw – displacement of active tissue, xz – displacement of the system, Pw – force 

generated by active tissue, Fext – external force. 

The mathematical model of the system is described by the following dynamical 

equations: 



 

 

 
𝑚𝑤𝑥̈𝑤 + 𝐶𝑤𝑥̇𝑤 + 𝐾𝑤𝑥𝑤 − 𝐶𝑧(𝑥̇𝑧 − 𝑥̇𝑤) − 𝐾𝑧(𝑥𝑧 − 𝑥𝑤) = 𝑃𝑤(𝑡),

𝑚𝑧𝑥̈𝑧 + 𝐶𝑧(𝑥̇𝑧 − 𝑥̇𝑤) + 𝐾𝑧(𝑥𝑧 − 𝑥𝑤) = −𝐹𝑒𝑥𝑡(𝑡),
 (1) 

where xw is mass mw displacement, xz - mass mz displacement, C, K are damping and stiffness 

parameters, where w and z means internal and external respectively, Pw(t) - internal force of 

contractile elements, Fext(t) - external force acting on/generated by the model. 

The mass coefficients and the nonlinear relationships of stiffness and damping 

parameters were determined based on the data published in [2], [31]. 

To introduce variability in muscle stiffness and damping parameters, a stochastic 

stationary process was incorporated in the form of white noise. Based on the power spectra 

analysis presented in [30], it was determined that two components should be implemented in 

the model: a dominant frequency component (harmoinic) and a noise component. The noise 

component was introduced in the form of a white noise signal applied to the damping (C) and 

stiffness (K) parameters values through superposition using a pseudo-random MATLAB 

generator. The harmonic component of the displacement (xz, as seen in Fig. 1) was obtained by 

assuming the following forms for the stiffness and damping parameters: 

 
𝐾𝑗(𝑡) = 𝑘𝑗𝑥𝑗

2 + 𝑁(𝑡) + 𝑆(𝑡), 𝑗 = 𝑤, 𝑧

𝐶𝑗(𝑡) = 𝑐𝑗𝑥̇𝑗
2 + 𝑁(𝑡), 𝑗 = 𝑤, 𝑧

 (2) 

where kj is correction factor for stiffness parameter, N(t) - time dependent noise, S(t) - time 

dependent sine-type function cj - correction factor for damping parameter. 

The numerical simulations of muscle systems presented in this study were based on data 

from  published in papers [30] and [12]. To match the frequency characteristics of the external 

force (Fext) as presented in those papers works, the rheological model (Fig. 1) was tuned by 

adjusting its damping and stiffness parameters for both papers separately. However, this 

approach does not allow us to determine the exact nature of the noise signal (whether it is white 

(Gaussian), pink, or another type of noise). Additionally, the signal spectrum analysis in [30] 

indicates the presence of a single dominant frequency within a narrow frequency range (0-12 

Hz). 

To achieve biologically results similar in terms of force production with a dominant 

frequency within the same range as reported in [30] to the biological systems, the presented 

model incorporated both single-frequency (harmionic) and noise components to modify adapt 

the characteristics of stiffness and damping coefficients. This modification was applied in the 

form of white noise, with an amplitude of 0.16% of the initial stiffness coefficient value and 

0.01% of the initial damping coefficient value. 



 

 

It's worth noting that the measurements in [30] were conducted for different force values 

expressed as a percentage of maximum voluntary contraction (MVC) force. For this article, 

That is why in this paper the model was specifically fitted to the highest tested MVC-force 

level, which was 95%. 

In this paper, we analysed two types of dynamic tasks and we tuned our model to fit 

results published in works [30] and [12]: 

• Task 1: The input variables included the displacement of the insertion (xz) and the 

external load (Fext) in the form of the Heaviside function, while the output variable was 

the internal force generated by the muscle system (Pw). 

• Task 2: The input variable was the internal force (Pw), and the output variable was the 

displacement of the insertion (xz). 

The initial conditions of displacement and velocity in the simulations were set to zero. 

To enable a comparative analysis of the model behaviour in both tasks, we applied the 

same signal analysis procedure as in [30]. It's important to note that changes in filter topologies 

can influence the results [22]. Therefore, following the methodology of work [30], we set the 

sampling rate for the simulation to 100 Hz. The signal was then passed through a low-pass filter 

with a cutoff frequency of 30 Hz (Butterworth, 9th order). To determine the power spectrum, we 

employed the Welch method with a 256-point Fourier transform, resulting in a real spectrum 

resolution of 0.39 Hz (sampling frequency of 100 Hz divided by 256 points). This procedure 

allows us to directly compare the frequency characteristics presented in this paper with those 

from publication [30]. 

The mechanical properties of the model, represented by stiffness and damping 

coefficients, were tuned to achieve similar nonlinear characteristics as reported in the work [31]. 

Additionally, we introduced time-dependent perturbations (harmonic and stochastic) to those 

coefficients as described in eq. 2. All numerical testing, data post-processing, and analysis were 

carried out within the MATLAB-Simulink (R2020b) environment. 

 

Experimental Verification 

In the next step we performed an experimental verification of the results obtained in 

numerical simulations. In the referenced and aforementioned publication [30], authors focused 



 

 

on examining the variability of force exerted by patients during conducted tests (force in index 

finger flexion, where the finger is pressed on a force sensor). Test subjects were provided with 

real-time feedback on the current force values displayed on a monitor, allowing them to make 

continuous adjustments. Based on the obtained time-course profiles of force and different force 

levels (with the assumption that the force should be maintained at a constant level by the 

patient), it was observed that the frequency of force fluctuations, regardless of the force level, 

exhibited a strong harmonic component around 1.24 Hz. 

The objective was to verify whether the muscle vibration frequency aligns with the 

results obtained and published in [30]. The authors of this publication conducted their 

experiment under different conditions and with different method. The experiment involved 

three male volunteers, aged 22±1, body mass 70±5 kg, body height 178±6 cm, without 

overweight, all of whom had not been diagnosed with musculoskeletal or neurological 

conditions and were, as per their declaration, in good psychophysical condition. The experiment 

was conducted by applicable laws and regulations, with the approval of the local ethics 

committee. 

During the experiment, each volunteer was seated with their back supported, the upper 

limb adducted in the horizontal plane, and the index finger pointing straight ahead while 

keeping it stationary at the level of a marker permanently attached to a stand. Another marker 

was attached to the finger, and changes in the position of both markers (thus, finger movement) 

were recorded by the Optitrack optoelectronic system (6 cameras, 120 Hz). Using data of 

displacements of those markers we performed frequency analyses according to the 

recommendations published in [30]. 

Results 

Numerical simulations 

To enable a comparative analysis of both models, we applied the same signal analysis 

procedure as in [30]. It's important to note that changes in filter topologies can influence the 

results [22]. Therefore, following the methodology of work [30], we set the sampling rate for 

the simulation to 100 Hz. The signal was then passed through a low-pass filter with a cutoff 

frequency of 30 Hz (Butterworth, 9th order). To determine the power spectrum, we employed 

the Welch method with a 256-point Fourier transform, resulting in a real spectrum resolution of 

0.39 Hz (sampling frequency of 100 Hz divided by 256 points). This procedure allows us to 



 

 

directly compare the frequency characteristics presented in this paper with those from 

publication [30]. 

The mechanical properties of the model, represented by stiffness and damping 

coefficients, were tuned to achieve similar nonlinear characteristics as reported in work [31]. 

Additionally, we introduced time-dependent perturbations to those coefficients as described in 

eq. 2. All numerical testing, data post-processing, and analysis were carried out within the 

MATLAB-Simulink (R2020b) environment. 

In this paper, we analysed two types of dynamic tasks using the model described in 

Equation (1): 

• Task 1: The input variables included the displacement of the insertion (xz) and the 

external load (Fext), while the output variable was the internal force generated by the 

muscle system (Pw). 

• Task 2: The input variable was the internal force (Pw), and the output variable was the 

displacement of the insertion (xz). 

To solve Task 1, we fine-tuned the stiffness and damping coefficients to match the 

numerical outcomes with the experimental results presented in [30]. Task 2 was performed with 

the same initial conditions as Task 1 to calculate the displacement of the insertion over time. 

By solving Task 1, we obtained normalized values of force as a function of insertion 

displacement (xz), using parameters tuned according to [30]. The numerical results are presented 

in Figures 2 to 4. 

 
Fig. 2.  Chosen normalised internal force values in time for model tuned to the data from [30]. 

In Figure 2, a normalized force over time is presented. Two distinct frequencies are 

observable: a lower frequency (sine-type) and a higher frequency (stochastic perturbation). The 

analysis of the results was conducted from the 5th  to the 15th  second, using a 10-second interval 



 

 

as in [30]. Both force and displacement results are presented in a normalized form to facilitate 

direct comparison with the results from [2]. 

The absolute power spectrum of the muscle system force for task 1. simulation is plotted 

in Figure 3. Maximum power is observed at 0.391 Hz, with an additional local peak at 4.251 

Hz. 

 
Fig. 3.  Absolute power of force. 

In Figure 4a, the proportional power as a function of spectral frequency is plotted, and 

in Figure 4b, the power spectrum is presented in the form of log power as a function of log 

frequency. The proportional power (Figure 4a) was obtained by dividing the power in each 

frequency bin by the total power in the respective power spectrum, as described in [30], also 

the format of presenting results has been prepared in the same manner as in [30] to ensure 

comparability. Notably, the maximum power spectrum is observed at 0.391 Hz, with an 

additional local maximum at 4.251 Hz (Fig. 4a), which aligns with the results published in the 

aforementioned paper. 

 
Fig. 4. Power spectrum of force: a) proportional power as a function of spectral frequency,  

b) log power as a function of log frequency. 



 

 

Using the same coefficients and initial conditions, Task 2 was solved, and its results are 

presented in Figure 5. The plot suggests that for a constant level of muscle system force (Pw), 

assumed for this particular simulation, oscillations in the displacement of the insertion can be 

observed. This phenomenon can be interpreted as micro-scale vibrations or displacements of 

the body segment, which are often observable in living systems. For example, when pointing a 

finger at a fixed point, small but noticeable vibrations are observed. This phenomenon arises 

because in biological systems, perfect stability is not achievable. 

 
Fig. 5. Normalised values of displacement in time for model tuned to the data from [30]. 

In the next phase of our research, we tuned our model by adjusting the stiffness and 

damping coefficients to achieve a qualitative similarity in the force characteristics (shape) to 

those presented in work [12], where torque measurements were conducted in an isometric 

configuration of the upper limb. The results of Task 1 are displayed in Figure 6a. Notably, in 

this case, a smaller amplitude of sine-type force oscillation was obtained in comparison to the 

results tuned to match those in [30] (see and compare with Fig. 2). Furthermore, the 

displacement of the insertion, as shown in Figure 6b, exhibits a different characteristic 

compared to Figure 5, highlighting the model's adaptability and ease of tuning. 

 



 

 

Fig. 6. Normalised values of (a) force in time for model tuned to the data from [12],  

(b) displacement in time for model tuned to the data from [12]. 

Experimental verification 

In the referenced publication [30], authors focused on examining the variability of force 

exerted by patients during conducted tests (force in index finger flexion, where the finger is 

pressed on a force sensor). Test subjects were provided with real-time feedback on the current 

force values displayed on a monitor, allowing them to make continuous adjustments. Based on 

the obtained time-course profiles of force and different force levels (with the assumption that 

the force should be maintained at a constant level by the patient), it was observed that the 

frequency of force fluctuations, regardless of the force level, exhibited a strong harmonic 

component around 1.24 Hz. 

Authors of this publication conducted their experiment under different conditions and 

with different method. The objective was to verify whether the muscle vibration frequency 

aligns with the results obtained and published in [30]. The experiment involved three 

individuals, all of whom had not been diagnosed with musculoskeletal or neurological 

conditions and were, as per their declaration, in good psychophysical condition. The experiment 

was conducted by applicable laws and regulations, with the approval of the local ethics 

committee. 

The volunteer was seated with their back supported, upper limb abducted, and the index 

finger pointing straight ahead while keeping it stationary at the level of a marker permanently 

attached to a stand. Another marker was attached to the finger, and changes in the position of 

both markers (thus, finger movement) were recorded by the Optitrack visual system (6 cameras, 

120 Hz). 

Frequency analyses were conducted using identical methods to those previously 

employed by Hamilton [30] (Welch method based on a 256-point Fourier transform, resulting 

in a real spectrum resolution of 0.39 Hz).  

The results obtained for one of the chosen volunteers are presented in Figures 7a and 

7b. Fig. 7a displays the results of the Fast Fourier Transform (FFT), while Fig. 7b exhibits 

results obtained using the same method as in Hamilton's work [30] - frequency analyses were 

conducted using identical methods (Welch method based on a 256-point Fourier transform, 

resulting in a real spectrum resolution of 0.39 Hz). The results obtained for one of the patients 

are presented in Figures 7a and 7b. Fig. 7a displays the results of the FFT, while Fig. 7b exhibits 

results obtained using the same method as in Hamilton's work [30]. 



 

 

 

 
Fig. 7.  Frequency analysis of finger displacement: a) FFT, b) Proportional Power. 

Analysing the above results, a significant difference in the frequency distribution in the 

spectra can be observed (it is important to note that making direct amplitude comparisons 

should not be performed). This difference arises, among other factors, from the resolution of 

the FFT, which, for a signal with a length of 60 seconds, is (1/60 Hz = 0.017 Hz). This 

substantial difference in resolutions, in practice, makes it challenging to conduct a proper signal 

analysis. As an example, in Fig. 8, the results of spectra for three examined individuals are 

presented using both the FFT method and the Welch method. 

 
Fig. 8.  Comparison of frequency analysis for: a) volunteer 1, b) volunteer 2, c) volunteer 3. 

While there is a noticeable difference in the frequency distribution among the examined 

individuals when using FFT, this difference is not apparent in the Proportional Power plots 

(Figure 8). The reason for this is the low-frequency resolution of the spectrum. This is 

confirmed by a simple correlation test (Spearman) performed on the Proportional Power charts 

for any two individuals, where the correlation value consistently exceeded 0.98. In the case of 



 

 

a correlation analysis of FFT charts, a high correlation was also achieved, not less than 0.74. 

However, as observed, this correlation significantly differs from the result obtained for 

Proportional Power. 

From the above analyses, two fundamental conclusions can be drawn: 

• analyses of finger displacements for three different individuals show a similar frequency 

character of motion (correlation > 0.74). There is a slight difference in the amplitudes 

of oscillations, but it is minimal. Therefore, it can be assumed that the character of finger 

motion for the examined individuals was similar. 

• despite some simplifications of the method used in work [30], it has been indicated that 

the results shows similarity between simulation and verification. 

Discussion 
As mentioned before, this study aimed to develop an enhanced rheological model of the 

musculoskeletal system by incorporating a stochastic model in the form of stationary processes 

and to prove that such an improved model can simulate the variability of force production by a 

skeletal muscle and musculo-skeletal system. 

To demonstrate the frequency characteristics and displacement of the proposed model, 

it was necessary to address two distinct dynamic tasks, Task 1 and Task 2. In both cases, the 

model was fine-tuned using data from works [12] and [30]. During the creation and tuning of 

the model, we chose to base it on the assumption of nonlinear characteristics of muscle tissue, 

as outlined in [39]. In task 1 we simulated the value of the force generated by the model in task 

2 – the displacement of the system, both for two different datasets. As it can be observed, finally 

we solved 4 (two pairs) tasks for two different datasets.  Our model presents results in terms of 

force, which provides a good fit of the model to real systems in terms of force stability 

production and ability to maintain a constant position. This does not affect the frequency 

characteristics and, assuming a constant or slow change in the radius of muscle force acting on 

the joint during muscle contraction allows for a proper comparison of the obtained results. All 

of our findings are consistent with those published in [12] and [30], particularly in terms of 

frequency characteristics and the presence of non-constant, disrupted force/torque production 

in biological systems. Our frequency characteristics were derived following the procedure 

described in [30] (see Figure 3-4). Subsequently, the proposed model was further adjusted by 

modifying the components of mechanical characteristics that describe stochastic noise, to 

achieve results similar to those published in [12] (see Figure 6a). Moreover, our approach yields 



 

 

realistic behaviour in the mathematical muscle model and enables the recreation of various 

conditions under which biological systems operate, which results in non-constant force 

production [33], leads to movement inaccuracies [6], [12] and disables our musculo-neuro-

skeletal system to attempt perfectly repetitive movement trajectory during even simple, 

repetitive tasks [6], [9], [20], [40]. In conclusion, as a result of solving two tasks with a model 

tuned to two different datasets, we obtained four sets of results, described below with study 

limitations addressed: 

• Normalized force values over as a function of time for a muscle tuned to the data from 

[30] (see Figure 2) show a relatively higher level of sine-type signal and more periodic 

force oscillations compared to those observed in work [30]. Moreover, Despite 

achieving consistency in frequency characteristics, some differences are noticeable in 

force production. The results  

• Results of normalized displacement of the system tuned to the data from [30] (see Figure 

5), These results cannot be directly compared with this publication due to the lack of 

data presenting muscle insertion/body segment displacement. However, the presented 

force-time series can be considered representative of a concentric-isometric contraction 

of a real-life muscle system and can be compared with real-life observations, where we 

obtained good agreement of results with our experimental veryfication. 

• Results of normalized values of force as a function of over time for a muscle model 

tuned to the data from [12] (see Figure 6a) (in this case, the muscle the model was re-

tuned) are very similar to that presented in [12]. In contrast to the case, when model was 

fitted to the data from [30], we observed smoother time series with a lower level of sine-

type disturbance components. This phenomenon is a consequence of changes in the 

amplitude of the sine-type signal during simulation. 

• Results of normalized values of displacement over as a function of time for the model 

tuned to the data from [12] (see Figure 6b) are similar to the case when the model was 

fitted to the data from [30], however, these results cannot be compared directly with the 

publication [12] due to the lack of published data presenting muscle insertion/body 

segment displacement. Nevertheless, these results represent the behaviour of the re-

tuned model and the change in length during contraction. In comparison to the results 

obtained for the model tuned to the publication [30], we observed a higher level of signal 

increase in the concentric phase and changes in the characteristics of the isometric 



 

 

phase, including visible components of higher frequencies. Based on the spectrum 

analysis, one dominant frequency (0.391 Hz) can be observed, with other neighbouring 

values resulting from spectral leakage. 

The final part of this work involved experimental verification done with 3 volunteers, 

which demonstrated a good agreement of our model with the measurements (see section 4 

Experimental verification). From the analysis of the experimental data, a fundamental 

conclusion can be drawn that analyses of finger displacements for three different individuals 

show a similar frequency character of motion (correlation > 0.74). There is a slight difference 

in the amplitudes of oscillations, but it is minimal. Therefore, it can be assumed that the 

character of finger motion for the examined individuals was similar. This conclusion stays in 

accordance with research outcomes published in [12] and [30]. Moreover, despite some 

simplifications of the method used in work [30], it has been indicated that the results show a 

similarity between simulation and verification. 

 

Conclusions 
This study aimed to introduce a novel approach to modelling force production in the 

musculoskeletal system, taking into account the real-life behaviour of biological systems and 

improving the rheological model. Despite certain technical limitations inherent in the source 

publications, the authors proposed a method for enhancing existing rheological models. These 

models had their mechanical characteristics tuned based solely on frequency characteristics 

presented in graphical form in works [12], [30]. 

Additionally, a procedure for adjusting spectral characteristics was provided, allowing 

any existing rheological model to be tailored to real-data measurements. From a practical 

standpoint, this procedure involved the inclusion of the required harmonic and low-amplitude 

noise components. To achieve the desired force level, the mechanical characteristics were 

adjusted by modifying damping and stiffness (C, K) coefficients (see Equation 2), as well as 

noise and harmonic components. 

To obtain results of force production that are biologically similar and exhibit a dominant 

frequency (harmonic) within the same range as those published in [30], the presented model in 

Fig. 1 utilized a single-frequency, harmonic component and noise (stochastic) to alter the 

characteristics of stiffness and damping coefficients in the form of white noise, at levels of 

0.16% of the initial stiffness and 0.01% of the initial damping values. 



 

 

Furthermore, we have demonstrated that even relatively simple mathematical 

simulations of muscles can yield numerical results that closely approximate real experiments 

when proper adjustments of the coefficients in the mathematical model are made. 

The approach presented here can be applied to simulate the behaviour of the 

musculoskeletal system as well as that of individual muscles. 

The uniqueness of this study is linked to the application of stochastic disturbances to the 

rheological muscle model. This approach enables the existing nonlinear model to simulate 

variations in muscle force production and to simulate more natural biological system behaviour. 

Also, our approach allows, after some modifications to add the stochastic disturbances to other, 

existing mathematical models of the muscles. 

Study limitations  
We point out the following main study limitations: 

• Mathematical model have nonlinear characteristics and adding stochastic perturbations to 

it increases the time of numerical simulations. Also, an additioonal effort has to be made for 

its proper adjustment. 

• The data analysis techniques employed were selected to mirror the methods used by the 

authors of the compared articles. Currently, both the measurement technique and numerical 

calculations allow for analyses with greater accuracy, such as increased sampling frequency 

and frequency resolution. 

• For verification we decided to use only healthy volunteers. It will be valuable, to check the 

behaviour of the model for patients with musculo-neuro-skeletal problems. 
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