PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Projektowanie układu kometabolicznego dla procesu transformacji 1,4-dioksanu: studia literaturowe i eksperymenty

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Designing of cometabolic microbial degradation of 1,4-dioxane
Języki publikacji
PL
Abstrakty
PL
W pracy przeprowadzono analizę danych literaturowych dotyczących biodegradacji 1,4-dioksanu. Wykonane zostały testy wzrostu mikroorganizmów, dla których 1,4-dioksan był jedynym źródłem węgla i energii, oraz w układzie kometabolicznym z fenolem jako substratem wzrostowym. Przeprowadzono również eksperymenty mające na celu wyindukowanie głównego enzymu szlaku rozkładu 1,4-dioksanu.
EN
Major methods of 1,4-dioxane degradation were described and different bacterial strains using that xenobiotic as a source of carbon and energy were presented. Microbial growth tests during 1,4-dioxane degradation in metabolic and cometabolic processes were conducted. The tests of the inducibility of monooxygenase, the main enzyme of 1,4-dioxane biodegradation pathway, were also provided.
Rocznik
Tom
Strony
69--92
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
Bibliografia
  • [1] Abe A., 1999. Distribution of 1,4-dioxane in relation to possible sources in the water environment. Sci. Total Environ., 227, 41-47.
  • [2] Arulazhagan P., Yeom I.T., Sivaraman C., Srikanth M., Rajesh Banu J., 2013. Role of nutrients on biodegradation of 1,4 dioxane by a bacterial consortium enriched from industrial sludge. Adv. Environ. Biol., 7(9), 2081-2090.
  • [3] Black R.E., Hurley F.J., Havery D.C., 2001. Occurrence of 1,4-dioxane in cosmetic raw materials and finished cosmetic products. J. AOAC Int., 84(3), 666-670.
  • [4] Chen D.Z., Jin X.J., Chen J., Ye J.X., Jiang N.X., Chen J.M., 2016. Intermediates and substrate interaction of 1,4-dioxane degradation by the effective metabolizer Xanthobacter flavus DT8. Int. Biodeterior. Bioder., 106, 133-140. doi: 10.1016/j.ibiod.2015.09.018.
  • [5] Criddle C.S., 1993. The kinetics of cometabolism. Biotechnol. Bioeng. 41, 1048-1056.
  • [6] Deng D., Li F., Wu C., Li M., 2018. Synchronic biotransformation of 1,4-dioxane and 1,1- dichloroethylene by a gram-negative propanotroph Azoarcus sp. DD4. Environ. Sci. Technol. Lett., 5, 526-532. doi: 10.1021/acs.estlett.8b00312.
  • [7] Fuh C.B., Lai M., Tsai H.Y., Chang C.M., 2005. Impurity analysis of 1,4-dioxane in nonionic surfactants and cosmetics using headspace solid-phase microextraction coupled with gas chromatography and gas chromatography–mass spectrometry. J. Chromatogr. A., 1071(1-2), 141-145. doi: 10.1016/j.chroma.2004.09.012.
  • [8] Greń I, Gąszczak A, Szczyrba E, Łabużek S (2009) Enrichment, isolation and susceptibility pro- file to the growth substrate of bacterial strains able to degrade vinyl acetate. Pol J Environ Stud 18:383-390 .
  • [9] Greń I., Wojcieszyńska D., Guzik U., Perkosz M., Hupert-Kocurek K. World J Microbiol Biotechnol. 2010;26:289-295. DOI: 10.1007/s11274-009-0172-6.
  • [10] Hand S., Wang B., Chu K.H., 2015. Biodegradation of 1,4-dioxane: Effects of enzyme inducers and trichloroethylene. Sci. Total Environ., 520, 154-159. doi: 10.1016/j.scitotenv.2015.03.031.
  • [11] Hatzinger P.B., Banerjee R., Rezes R., Streger S.H., McClay K., Schaefer C.E., 2017. Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates. Biodegradation, 28(5-6), 453-468. doi: 10.1007/s10532-017-9808-7.
  • [12] He Y., Mathieu J., da Silva M.L.B., Li M., Alvarez P.J.J., 2018. 1,4-Dioxane-degrading consortia can be enriched from uncontaminated soils: prevalence of Mycobacterium and soluble di-iron monooxygenase genes. Microb. Biotechnol., 11(1), 189-198. doi: 10.1111/1751-7915.12850.
  • [13] Horvath R.S., 1972. Microbial co-metabolism and the degradation of organic compounds in na ture. Bacteriol. Rev., 36(2), 146-155.
  • [14] Huang H., Shen D., Li N., Shan D., Shentu J., Zhou Y.Y., 2014. Biodegradation of 1,4-dioxane by a novel strain and its biodegradation pathway. Water Air Soil Pollut., 225(9), 2135-2146. doi: 10.1007/s11270-014-2135-2.
  • [15] Inoue D., Tsunoda T., Sawada K., Yamamoto N., Saito Y., Sei K., Ike M., 2016. 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus. Biodegradation, 27, 277-286. doi: 10.1007/s10532-016-9772-7.
  • [16] Inoue D., Tsunoda T., Yamamoto N., Ike M., Sei K., 2018. 1,4-Dioxane degradation characteris tics of Rhodococcus aetherivorans JCM 14343. Biodegradation, 29(3), 301-310. doi: 10.1007/s10532-018-9832-2.
  • [17] Isaka K., Udagawa M., Kimura Y., Sei K., Ike M., 2016. Biological 1,4-dioxane wastewater treatment by immobilized Pseudonocardia sp. D17 on lower 1,4-dioxane concentration. J. Water Environ. Technol., 14(4), 289-301. doi: 10.2965/jwet.15-084.
  • [18] Juhász M.L.W., Marmur E.S., 2014. A review of selected chemical additives in cosmetic products. Dermatol. Ther., 27(6), 317-322. doi: 10.1111/dth.12146.
  • [19] Karges U., Backer J., Püttmann W., 2018. 1,4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume. Sci. Total Environ., 619-620, 712-720. doi: 10.1016/j.scitotenv.2017.11.043.
  • [20] Kim Y.M., Jeon J.R., Murugesan K., Kim E.J., Chang Y.S., 2009. Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06. Biodegradation, 20(4), 511-519. doi: 10.1007/s10532-008-9240-0.
  • [21] Kohlweyer U., Thiemer B., Schräder T., Andreesen J.R., 2000. Tetrahydrofuran degradation by a newly isolated culture of Pseudonocardia sp. strain K1. FEMS Microbiol. Lett., 186(2), 301-306. doi: 10.1111/j.1574-6968.2000.tb09121.x.
  • [22] Lee K.H., Park D.R., Lee Y.J., Jun M.H., Yeom I.T., 2015. A study on biodegradation of 1,4- dioxane using mixed consortium of bacteria. Int. J. Adv. Sci. Eng. Technol., (IJASEAT), 3, 18- 19.
  • [23] Mahendra S., Alvarez-Cohen L., 2006. Kinetics of 1,4-dioxane biodegradation by monooxygese-expressing bacteria. Environ. Sci. Technol., 40(17), 5435-5442. doi: 10.1021/es060714v.
  • [24] Mahendra S., Grostern A., Alvarez-Cohen L., 2013. The impact of chlorinated solvent co- contaminants on the biodegradation kinetics of 1,4-dioxane. Chemosphere, 91(1), 88-92. doi: 10.1016/j.chemosphere.2012.10.104.
  • [25] Mahendra S., Petzold C.J., Baidoo E.E., Keasling J.D., Alvarez-Cohen L., 2007. Identification of the intermediates of in vivo oxidation of 1,4-dioxane by monooxygenase-containing bacteria. En- viron. Sci. Technol., 41(21), 7330-7336. doi: 10.1021/es0705745.
  • [26] Matsui R., Takagi K., Sakakibara F., Abe T., Shiiba K., 2016. Identification and characterization of 1,4-dioxane-degrading microbe separated from surface seawater by the seawater-charcoal perfusion apparatus. Biodegradation, 27(2-3), 155-163. doi: 10.1007/s10532-016-9763-8.
  • [27] Parales R.E., Adamus J.E., White N., May H.D., 1994. Degradation of 1,4-dioxane by an actinomycete in pure culture. Appl. Environ. Microbiol., 60(12), 4527-4530.
  • [28] Sei K., Miyagaki K., Kakinoki T., Fukugasako K., Inoue D., Ike M., 2013. Isolation and charac- terization of bacterial strains that have high ability to degrade 1,4-dioxane as a sole carbon and energy source. Biodegradation, 24(5), 665-674. doi: 10.1007/s10532-012-9614-1.
  • [29] Sei K., Oyama M., Kakinoki T., Inoue D., Ike M., 2013. Isolation and characterization of tetrahydrofuran- degrading bacteria for 1,4-dioxane-containing wastewater treatment by co- metabolic degradation. J. Water Environ. Technol., 11(1), 11-19. doi: 10.2965/jwet.2013.11.
  • [30] Sun B., Ko K., Ramsay J.A., 2011. Biodegradation of 1,4-dioxane by a Flavobacterium. Biodeg- radation, 22(3), 651-659. doi: 10.1007/s10532-010-9438-9.
  • [31] Szczyrba E., Kaleta A., Szczotka A., Bartelmus G., 2015. Kinetyka biodegradacji fenolu przez szczep Stenotrophomonas maltophilia KB2 w reaktorze okresowym. Prace naukowe IICh PAN, 19, 5-19.
  • [32] Tahara M., Obama T., Ikarashi Y., 2013. Development of analytical method for determination of 1,4-dioxane in cleansing products. Int. J. Cosmet. Sci., 35(6), 575-580. doi: 10.1111/ics.12079.
  • [33] Vainberg S., McClay K., Masuda H., Root D., Condee C., Zylstra G.J., Steffan R.J., 2006. Bio- degradation of ether pollutants by Pseudonocardia sp. strain ENV478. Appl. Environ. Microbiol., 72(8), 5218-5224. doi: 10.1128/AEM.00160-06.
  • [34] Water Research Foundation (2014). 1,4-dioxane white paper. Denver, Colorado.
  • [35] Yamamoto N., Saito Y., Inoue D., Sei K., Ike M., 2018. Characterization of newly isolated Pseudonocardia sp. N23 with high 1,4-dioxane-degrading ability. J. Biosci. Bioeng., 125(5), 552- 558. doi: 10.1016/j.jbiosc.2017.12.005.
  • [36] Zenker M.J., Borden R.C., Barlaz M.A., 2000. Mineralization of 1,4-dioxane in the presence of a structural analog. Biodegradation, 11(4), 239-246. doi: 10.1023/A:1011156924700.
  • [37] Zhang S., Gedalanga P.B., Mahendra S., 2017. Advances in bioremediation of 1,4-dioxane- contaminated waters. J. Environ. Manage., 204, 765-774. doi: 10.1016/j.jenvman.2017.05.033.
  • [38] Zhou Y.Y., Huang H., Shen D., 2016. Multi-substrate biodegradation interaction of 1,4-dioxane and BTEX mixtures by Acinetobacter baumannii DD1. Biodegradation, 27(1), 37-46. doi: 10.1007/s10532-015-9753-2.
  • [39] http://eawag-bbd.ethz.ch/servlets/pageservlet?ptype=r&reacID=r0696.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d22cc85e-2aa6-4a6a-ad9f-addbfaa8784b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.