Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study addresses the challenge faced by Finite Element Analysts when choosing between free and mapped meshes, especially in terms of convergence stability and solution accuracy. The investigation focuses on 3D solid models under static structural loading, analyzed using Ansys® and MSC Patran®. Both free and mapped mesh types, employing equivalent 3D solid elements, are used to assess an aircraft structural component under design load conditions, with fixed boundaries. For free meshes, Tet10 elements in Patran (equivalent to Solid 72 in Ansys) are used, whereas for mapped meshes, CPENTA / CHEXA elements in Patran (equivalent to Wed6 / Hex8 in Ansys) are employed. Mesh convergence studies ensure that discretization does not affect the numerical solution. Notably, a significant stress increase is observed with successive refinement of free meshes, while mapped meshes achieve mesh independence at coarser refinement levels. Comparison of fringe plots indicates the same location for maximum deformation and equivalent stress in both free and mapped mesh models. The findings demonstrate that free meshes tend to underpredict maximum deformation and equivalent stress compared to mapped meshes, with both meshes showing deformation and stress at consistent locations. The findings underscore the importance of carefully choosing the appropriate mesh type, particularly when analyzing critical structural components, to ensure reliability and accuracy in FEA simulations.
Czasopismo
Rocznik
Tom
Strony
115--132
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Aeronautics and Avionics, Air University Islamabad, E-9/4 E-9, Islamabad, Islamabad Capital Territory 44000, Pakistan
Bibliografia
- Arndt, D., Bangerth, W., & Davydov, D. (2021). Finite element library: Design, features, and insights. Computers & Mathematics with Applications, 81, 407-422. https://doi.org/10.1016/j.camwa.2020.02.022
- De Mooij, C., Martinez, M., & Benedictus, R. (2019). iFEM benchmark problems for solid elements. Smart Materials and Structures, 28(6), 065003. https://doi.org/10.1088/1361-665X/ab136f
- Ereiz, S., Duvnjak, I., & Jiménez-Alonso, J. F. (2022). Review of finite element model updating methods for structural applications. Structures, 41, 684-723. https://doi.org/10.1016/j.istruc.2022.05.041
- Halliday, A., Vulpe, C., & Fourie, A. (2023). A comparison of finite element software for use in tailings applications. In 91st Annual ICOLD Meeting, ICOLD.
- Hoppe, H. (2023). Progressive meshes. In Seminal Graphics Papers: Pushing the Boundaries, 2, 111-120. https://doi.org/10.1145/3596711.3596725
- İrsel, G. (2019). The effect of using shell and solid models in structural stress analysis. Vibroengineering PROCEDIA, 27, 115-120. https://doi.org/10.21595/vp.2019.20977
- Jalammanavar, K., Pujar, N., & Raj, R. V. (2018). Finite element study on mesh discretization error estimation. 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), 344-350. https://doi.org/10.1109/CTEMS.2018.8769258
- Jiang, Z., Zhang, Z., & Hu, Y. (2021). Bijective and coarse high-order tetrahedral meshes. ACM Transactions on Graphics (TOG), 40(4), 1-16. https://doi.org/10.1145/3450626.3459840
- Kurowski, P. M. (2022). Finite element analysis for design engineers. Pennsylvania: SAE International.
- Liu, Z., Chen, J., & Xia, Y. (2021). Automatic sizing functions for unstructured mesh generation. Engineering Computations, 38(10), 3995-4023. https://doi.org/10.1108/EC-12-2020-0700
- Magomedov, I., & Sebaeva, Z. (2020). Comparative study of finite element analysis software packages. Journal of Physics: Conference Series, 1515(2020), 032073. https://doi.org/10.1088/1742-6596/1515/3/032073
- Marcé-Nogué, J., Fortuny, J., Gil, L., & Sánchez, M. (2020). On improving mesh generation in finite element analysis. Spanish Journal of Palaeontology, 30(1), 117-132. https://doi.org/10.7203/sjp.30.1.17227
- Nemade, A., & Shikalgar, A. (2020). The mesh quality significance in finite element analysis. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 17(2), 44-48. https://doi.org/10.9790/1684-1702054448
- Okereke, M., & Keates, S. (2018). Finite element mesh generation. In Finite element applications: A practical guide to FEM process (p. 165-186). https://doi.org/10.1007/978-3-319-67125-3_6
- Papadimitrakis, D., Armstrong, C. G., & Robinson, T. T. (2022). Investigating singularities in hex meshing. In Mesh generation and adaptation: Cutting-edge techniques (p. 41-67). https://doi.org/10.1007/978-3-030-92540-6_3.
- Park, M., Kleb, W., Jones, W., Krakos, J., Todd, M., Loseille, A., Haimes, R., & Dannenhoffer, J. (2019). Geometry modeling for unstructured mesh adaptation. AIAA Aviation 2019 Forum. https://doi.org/10.2514/6.2019-2946.
- Pietroni, N., Campen, M., Sheffer, A., Cherchi, G., Bommes, D., Gao, X., Scateni, R., Ledoux, F., Remacle, J. & Livesu, M. (2022). Hex-mesh generation and processing: A survey. ACM Transactions on Graphics, 42(2), 1-44.
- Ruggiero, A., D’Amato, R., & Affatato, S. (2019). Comparison of meshing strategies in finite element modelling. Materials, 12(14), 2332. https://doi.org/10.3390/ma12142332
- Sabat, L., & Kundu, C. K. (2020). History of Finite Element Method: A Review. In Recent Developments in Sustainable Infrastructure (pp. 395-404). Springer Singapore. https://doi.org/10.1007/978-981-15-4577-1_32
- Schröder, J., Wick, T., & Reese, S. (2021). A selection of benchmark problems in solid mechanics and applied mathematics. Archives of Computational Methods in Engineering, 28(2), 713-751. https://doi.org/10.1007/s11831-020-09477-3
- Shah, M., Yunus, M., & Rani, M. (2022). A comparison of FE modelling techniques of composite structure using MSC Patran/Nastran and Ansys software. AIP Conference Proceedings, 2545(1), 7. https://doi.org/10.1063/5.0103287
- Sher, R. J., Irfan-ul-Hassan, M., & Ghafoor, M. T. (2020). Analysis and design of box girder and t-beam bridge superstructure; A comparative study. Mehran University Research Journal of Engineering & Technology, 39(3), 453-465. https://doi.org/10.22581/muet1982.2003.01
- Smitha, T. (2021). A study on various mesh generation techniques used for engineering applications. Journal of Innovative Image Processing, 3(2), 75-84. https://doi.org/10.36548/jiip.2021.2.001
- Svetlichny, J. (2022). Overview of Ansys meshing pre-processor capabilities to create high quality meshes. Open Information and Computer Integrated Technologies, 5(95), 83-113. https://doi.org/10.32620/oikit.2022.95.07
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2272d0e-7b10-429e-9089-50d6e51a2c1a