PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heart rate variability (HRV) during virtual reality immersion

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of the study was assessment of the hour-long training involving handling virtual environment (sVR) and watching a stereoscopic 3D movie on the mechanisms of autonomic heart rate (HR) regulation among the subjects who were not predisposed to motion sickness. In order to exclude predispositions to motion sickness, all the participants (n=19) underwent a Coriolis test. During an exposure to 3D and sVR the ECG signal was continuously recorded using the Holter method. For the twelve consecutive 5-min epochs of ECG signal, the analysis of heart rate variability (HRV) in time and frequency domains was conducted. After 30 min from the beginning of the training in handling the virtual workstation a significant increase in LF spectral power was noted. The values of the sympathovagal LF/HF index while sVR indicated a significant increase in sympathetic predominance in four time intervals, namely between the 5th and the 10th minute, between the 15th and the 20th minute, between the 35th and 40th minute and between the 55th and the 60th minute of exposure.
Rocznik
Strony
47--54
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
  • Central Institute for Labour Protection - National Research Institute (CIOP-PIB), Poland
autor
  • Central Institute for Labour Protection - National Research Institute (CIOP-PIB), Poland
autor
  • Central Institute for Labour Protection - National Research Institute (CIOP-PIB), Poland
autor
  • Central Institute for Labour Protection - National Research Institute (CIOP-PIB), Poland
Bibliografia
  • 1. Grabowski A. Zwiększenie realizmu symulacji w środowisku wirtualnym dzięki wykorzystaniu zmysłu dotyku [Enhancing the immersiveness of virtual environment by engaging the sense of touch]. Mechanik. 2012;07/2012:251-258.
  • 2. Mól ACA, Jorgea CAF, Coutob PM, Augustoa SC, Cunhac GG, Landau L. Virtual environments simulation for dose assessment in nuclear plants. Prog Nucl Energy. 2009;51(2):382–338.
  • 3. Gallagher AvG, Cates C. Virtual reality training for the operating room and cardiac catheterisation laboratory. Lancet. 2004;364(9444):1538-1540.
  • 4. Zużewicz K, Saulewicz A, Konarska M, Kaczorowski Z. Hart rate variability and motion sickness during forklift simulator driving. Int J Occup Saf Ergon (JOSE). 2011;17(4):403-410.
  • 5. Lozia Z. Symulatory jazdy samochodem [Driving simulators]. Warszawa: WKŁ; 2008.
  • 6. Ragan ED, Sowndararajan A, Kopper R, Bosman DA. The effects of higher levels of immersion on procedure memorization performance and implications for educational virtual environments. Presence. 2010;19(6):527-543.
  • 7. Graybiel A, Wood ChD, Miller EF, Cramer DB. Diagnostic criteria for grading the severity of acute motion sickness. Aerosp Med. 1968;39(5):453-455.
  • 8. Griffin MJ. Physical characteristics of stimuli provoking motion sickness. In: AGARD Lecture Series. Motion Sickness: Significance in Aerospace Operations and Prophylaxis (USA). 1991.
  • 9. Jeng-Weei Lin J, Parker DE, Lahav M, Furness TA. Unobtrusive vehicle motion prediction cues reduced simulator sickness during passive travel in a driving simulator. Ergonomics. 2005;48:608–624.
  • 10. Bubka A, Bonato F, Palmisano S. Expanding and contracting optical flow patterns and simulator sickness. Aviat Space Environ Med. 2007;78:383-386.
  • 11. Draper MH, Viire ES, Furness TA, Gawron VJ. Effects of image scale and system time delay on simulator sickness within head-coupled virtual environments. Hum Factors. 2001;43:129-146.
  • 12. Webb CM, Bass JM, Johnson DM, Kelley AM, Martin CR, Wildzunas RM. Simulator sickness in helicopter flight training school. Aviat Space Environ Med. 2009;80:541-545; discussion 546.
  • 13. Malińska M, Zużewicz K, Bugajska J, Grabowski A. Subiektywne odczucia wskazujące na występowanie choroby symulatorowej i zmęczenie po ekspozycji na rzeczywistość wirtualną [Subjective sensations indicating simulator disease and fatigue after exposure to virtual reality]. Med Pr. 2014;65(3):361-371.
  • 14. Jankowski J, Grabowski A. Projektowanie wirtualnych środowisk w celu szkolenia pracowników w zakresie prac szczególnie niebezpiecznych [Designing of virtual environments for training of workers in the case of dangerous works]. Mechanik. 2012;07:281-287.
  • 15. Akiduki H, Nishiike S, Watanabe H, Matsuoka K, Kubo T, Takeda N. Visual-vestibular conflict induced by virtual reality in humans. Neurosci Lett. 2003;340(3): 197-200.
  • 16. Zuzewicz K. Fizjologiczne skutki uboczne wykorzystywania technik rzeczywistości wirtualnej [The physiological side results of using the techniques of the virtual reality]. Poland: CIOP-PIB; 2010. Available from: http://www.ciop.pl/23261.html.
  • 17. Task Force. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043–65.
  • 18. Pölönen M, Salmimaa M, Aaltonen V, Häkkinen J, Takatalo J. Subjective measures of presence and discomfort in viewers of color separation-based tereoscopic cinema. J Soc Inf Disp. 2009;17:459–466.
  • 19. Pölönen M, Salmimaa M, Takatalo J, Häkkinen J. Subjective experiences ofwatching stereoscopic avatar and U2 3D in a cinema. J. Electron Imaging. 2012; 011006-1e 011006-8.
  • 20. Pölönen M, Järvenpää T, Bilcu B. Stereoscopic 3D entertainment and its effect on viewing comfort: Comparison of children and adults. Appl Ergon. 2013;44(1):151–160.
  • 21. Berntson GG, Cacioppo JT, Quigley KS. Autonomic determinism: the modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychol Rev. 1991;98(4):459–487.
  • 22. Muldoon MF, Bachen EA, Manuck SB, Waldstein SR, Bricker PL, Bennett JA. Acute cholesterol responses to mental stress and change in posture. Arch Intern Med. 1992;152:775–780. doi:10.1001/archinte.152.4.775
  • 23. Owens JF, Stoney CM, Matthews KA. Menopausal status influences ambulatory blood pressure levels and blood pressure changes during mental stress. Circulation. 1993;88:2794–2802.
  • 24. Van Eekelen APJ, Houtveen JH, Kerkhof GA. Circadian variation in cardiac autonomic activity: reactivity measurements to different types of stressors. Chronobiol Int. 2004;21(1):107–129.
  • 25. Berntson GG, Cacioppo JT, Binkley PF, Uchino BN, Quigley KS, Fieldstone A. Autonomic cardiac control. III. Psychological stress and cardiac response in autonomic space as revealed by pharmacological blockades. Psychophysiology. 1994;31:599–608.
  • 26. Backs R. W, Lenneman JK, Wetzel JM, Green P. Cardiac measures of driver workload during simulated driving with and without visual occlusion. Hum Factors. 2003;45(4):525–538.
  • 27. Ohyama S, Nishiike S, Watanabe H, Matsuoka K, Akizuki H, Takeda N, Harada T. Autonomic responses during motion sickness induced by virtual reality. Aulis Nasus Larynx. 2007;34:303–306.
  • 28. Makowiec-Dąbrowska T, Bortkiewicz A, Siedlecka J, Gadzicka E. Wpływ zmęczenia na zdolność prowadzenia pojazdów [Effect of fatigue on the fitness to driver]. Med Pregl. 2011;62(3):281–290.
  • 29. Watanabe H, Teramoto W, Umemura H. Effect of predictive sign of acceleration on heart rate variability in passive translation situation: preliminary evidence using visual and vestibular stimuli in VR environment. J Neuroeng Rehabil. 2007;4:36.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d21de43f-ee9d-4137-a68a-b1ea27e4c215
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.