PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Classification Method Related to Respiratory Disorder Events Based on Acoustical Analysis of Snoring

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Acoustical analysis of snoring provides a new approach for the diagnosis of obstructive sleep apnea hypopnea syndrome (OSAHS). A classification method is presented based on respiratory disorder events to predict the apnea-hypopnea index (AHI) of OSAHS patients. The acoustical features of snoring were extracted from a full night’s recording of 6 OSAHS patients, and regular snoring sounds and snoring sounds related to respiratory disorder events were classified using a support vector machine (SVM) method. The mean recognition rate for simple snoring sounds and snoring sounds related to respiratory disorder events is more than 91.14% by using the grid search, a genetic algorithm and particle swarm optimization methods. The predicted AHI from the present study has a high correlation with the AHI from polysomnography and the correlation coefficient is 0.976. These results demonstrate that the proposed method can classify the snoring sounds of OSAHS patients and can be used to provide guidance for diagnosis of OSAHS.
Rocznik
Strony
141--151
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
autor
  • School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
autor
  • School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
  • State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
Bibliografia
  • 1. Adams N., Strauss M., Schluchter M., Redline S. (2001), Relation of measures of sleep-disordered breathing to neuropsychological functioning, American Journal of Respiratory and Critical Care Medicine, 163 (7): 1626-1631, doi: 10.1164/ajrccm.163.7.2004014.
  • 2. Becker H. F. et al. (1999), Breathing during sleep in patients with nocturnal desaturation, American Journal of Respiratory and Critical Care Medicine, 159 (1): 112-118, doi: 10.1164/ajrccm.159.1.9803037.
  • 3. Ben-Israel N., Tarasiuk A., Zigel Y. (2012), Obstructive apnea hypopnea index estimation by analysis of nocturnal snoring signals in adults, Sleep, 35 (9): 1299-305, doi: 10.5665/sleep.2092.
  • 4. Cortes C., Vapnik V. N. (1995), Support vector networks, Machine Learning, 20 (3): 273-297, doi: 10.1007/BF00994018.
  • 5. Emoto T., Abeyratne U. R., Kawano K., Okada T., Jinnouchi O., Kawata I. (2018), Detection of sleep breathing sound based on artificial neural network analysis, Biomedical Signal Processing and Control, 41, 81-89, doi: 10.1016/j.bspc.2017.11.005.
  • 6. FitzGerald D., Paulus J. (2006), Unpitched percussion transcription, [in:] A. Klapuri, M. Davy [Eds], Signal processing methods for music transcription, Springer, Boston, MA, doi: 10.1007/0-387-32845-9_5.
  • 7. Fiz J. A. et al. (1996), Acoustic analysis of snoring sound in patients with simple snoring and obstructive sleep apnea, European Respiratory Journal, 9 (11): 2365-2370, doi: 10.1183/09031936.96.09112365.
  • 8. Flemons W. W., Tsai W. (1997), Quality of life consequences of sleep-disordered breathing, Journal of Allergy and Clinical Immunology, 99 (2): S750-S756, doi: 10.1016/S0091-6749(97)70123-4.
  • 9. Ghaemmaghami H., Abeyratne U. R., Hukins C. (2009), Normal probability testing of snore signals for diagnosis of obstructive sleep apnea, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, pp. 5551-5554, doi: 10.1109/IEMBS.2009.5333733.
  • 10. Hirotaka H., Masakazu T., Syunsuke T., Toshikazu S., Hiroshi Y. (2017), Validation of a new snoring detection device based on a hysteresis extraction algorithm, Auris Nasus Larynx, 44 (5): 576-582, doi: 10.1016/j.anl.2016.12.009.
  • 11. Hrubos-Strøm H. et al. (2012), Sleep apnoea, anxiety, depression and somatoform pain: a community-based high-risk sample, European Respiratory Journal, 40 (2): 400-407, doi: 10.1183/09031936.00111411.
  • 12. Jin H. et al. (2015), Acoustic analysis of snoring in the diagnosis of obstructive sleep apnea syndrome: a call for more rigorous studies, Journal of Clinical Sleep Medicine, 11 (7): 765-771, doi: 10.5664/jcsm.4856.
  • 13. Kang J. H., Lin H. C. (2012), Obstructive sleep apnea and the risk of autoimmune diseases: a longitudinal population-based study, Sleep Medicine, 13 (6): 583-588, doi: 10.1016/j.sleep.2012.03.002.
  • 14. Kim T., Kim J. W., Lee K. (2018), Detection of sleep disordered breathing severity using acoustic biomarker and machine learning techniques, Biomedical Engineering OnLine, 17 (1): 16, doi: 10.1186/s12938-018-0448-x.
  • 15. Loke Y. K., Brown J. W., Kwok C. S., Niruban A., Myint P. K. (2012), Association of obstructive sleep apnea with risk of serious cardiovascular events: a systematic review and meta-analysis, Circulation: Cardiovascular Quality and Outcomes, 5 (5): 720-728, doi: 10.1161/CIRCOUTCOMES.111.964783.
  • 16. Marin J. M. et al. (2012), Association between treated and untreated obstructive sleep apnea and risk of hypertension, JAMA, 307 (20): 2169-2176, doi: 10.1001/jama.2012.3418.
  • 17. Martínez-García M. A. et al. (2012), Cardiovascular mortality in obstructive sleep apnea in the elderly: role of long-term continuous positive airway pressure treatment: a prospective observational study, American Journal of Respiratory and Critical Care Medicine, 186 (9): 909-916, doi: 10.1164/rccm.201203-0448OC.
  • 18. Młyńczak M., Migacz E., Migacz M., Kukwa W. (2017), Detecting breathing and snoring episodes using a wireless tracheal sensor – a feasibility study, IEEE Journal of Biomedical and Health Informatics, 21 (6): 1504-1510, doi: 10.1109/JBHI.2016.2632976.
  • 19. Namtvedt S. K. et al. (2013), Impaired endothelial function in persons with obstructive sleep apnoea: impact of obesity, Heart, 99 (1): 30-34, doi: 10.1136/heartjnl-2012-303009.
  • 20. Ng A. K., Koh T. S., Baey E., Lee T. H., Abeyratne U. R., Puvanendran K. (2008), Could formant frequencies of snore signals be an alternative means for the diagnosis of obstructive sleep apnea?, Sleep Medicine, 9 (8): 894-898, doi: 10.1016/j.sleep.2007.07.010.
  • 21. Nieto F. J. et al. (2000), Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep heart health study, JAMA, 283 (14):, 1829-1836, doi: 10.1001/jama.283.14.1829.
  • 22. Pack A. I., Gurubhagavatula I. (1999), Economic implications of the diagnosis of obstructive sleep apnea, Annals of Internal Medicine, 130 (6): 533-534, doi: 10.7326/0003-4819-130-6-199903160-00019.
  • 23. Peeters G. (2004), A large set of audio features for sound description (similarity and classification) in the CUIDADO project, CUIDADO IST Project Report. 54, version 1.0, pp. 1-25.
  • 24. Perez-Padilla J. R., Slawinski E., Difrancesco L. M., Feige R. R., Remmers J. E., Whitelaw W. A. (1993), Characteristics of the snoring noise in patients with and without occlusive sleep apnea, American Review of Respiratory Disease, 147 (3): 635-644, doi: 10.1164/ajrccm/147.3.635.
  • 25. Pevernagie D., Aarts R. M., Meyer M. D. (2010), The acoustics of snoring, Sleep Medicine Review, 14 (2): 131-144, doi: 10.1016/j.smrv.2009.06.002.
  • 26. Rakel R. E. (2009), Clinical and societal consequences of obstructive sleep apnea and excessive daytime sleepiness, Postgraduate medicine, 121 (1): 86-95, doi: 10.3810/pgm.2009.01.1957.
  • 27. Richman J. S., Moorman J. R. (2000), Physiological time-series analysis using approximate entropy and sample entropy, American Journal of Physiology-Heart and Circulatory Physiology, 278 (6): H2039-H2049, doi: 10.1152/ajpheart.2000.278.6.H2039.
  • 28. Tobin M. J., Mador M. J., Guenther S. M., Lodato R. F., Sackner M. A. (1998), Variability of resting respiratory drive and timing in healthy-subjects, Journal of Applied Physiology, 65 (1): 309-317, doi: 10.1152/jappl.1988.65.1.309.
  • 29. Wang C., Peng J., Song L, Zhang X. (2017), Automatic snoring sounds detection from sleep sounds via multifeatures analysis, Australasian Physical & Engineering Sciences in Medicine, 40 (1): 127-135, doi: 10.1007/s13246-016-0507-1.
  • 30. Xu H. et al. (2015), Nocturnal snoring sound analysis in the diagnosis of obstructive sleep apnea in the Chinese Han population, Sleep Breath, 19 (2): 599-605, doi: 10.1007/s11325-014-1055-0.
  • 31. Xu H., Yu L., Huang W., Chen L., He Y. (2009), A preliminary study of acoustic characteristics of snoring sound in patients with obstructive sleep apnea/hypopnea syndrome (OSAHS) and with simple snoring, Journal of Audiology and Speech Pathology, 17 (3): 235-238, http://en.cnki.com.cn/Article_en/CJFDTOTAL-TLXJ200903013.htm.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d21af740-d176-40f1-b03c-acc6cb8c4291
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.