Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Methods for the design of discrete-time linear systems with desired poles and zeros of their transfer matrices are proposed. Conditions for the existence of the solution to the problem and the procedures for computation of the desired matrices are given. Reduction of the systems with controllable and observable pairs to those with nilpotent matrices is analysed. The procedures are illustrated by simple numerical examples of linear discrete-time systems.
Rocznik
Tom
Strony
59--68
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Department of Automatic Control and Robotics, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
autor
- Department of Automatic Control and Robotics, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
Bibliografia
- [1] Antsaklis, P. and Michel, A. (1997). Linear Systems, Birkhäuser, Boston.
- [2] Emirsajłow, Z. (2021). Discrete-time output observers for boundary control systems, International Journal of Applied Mathematics and Computer Science 31(4): 613-626, DOI: 10.34768/amcs-2021-0042.
- [3] Fadhilah, H.N., Adzkiya, D., Arif, D.K., Zhai, G. and Mardlijah (2023). Decentralized static output feedback controller design for linear interconnected systems, International Journal of Applied Mathematics and Computer Science 33(1): 83-96, DOI: 10.34768/amcs-2023-0007.
- [4] Gantmacher, F. (1959). The Theory of Matrices, Chelsea Publisher Company, London.
- [5] Hautus, M. and Heymann, M. (1978). Linear feedback - An algebraic approach, SIAM Journal on Control and Optimization 16(1): 83-105.
- [6] Kaczorek, T. (1992). Linear Control Systems, Vols. 1 and 2, Wiley, New York.
- [7] Kaczorek, T. (2021). Poles and zeros assignment by state feedbacks in positive linear systems, Archives of Control Sciences 31(3): 593-605.
- [8] Kaczorek, T. (2022). Eigenvalues assignment in uncontrollable linear systems, Bulletin of the Polish Academy of Sciences, Technical Sciences 70(6): 1-3.
- [9] Kaczorek, T. (2023a). Eigenvalues assignment in descriptor linear systems by state and its derivative feedbacks, Bulletin of the Polish Academy of Sciences: Technical Sciences 71(5): 1-5.
- [10] Kaczorek, T. (2023b). Transformations of the matrices of linear systems to their canonical form with desired eigenvalues, Bulletin of the Polish Academy of Sciences: Technical Sciences 71(6): 1-5.
- [11] Kaczorek, T. (2024). Transformations of linear standard systems to positive asymptotically stable linear ones, International Journal of Applied Mathematics and Computer Science 34(3): 341-348, DOI: 10.61822/amcs-2024-0024.
- [12] Kaczorek, T. and Ruszewski, R. (2022). Global stability of discrete-time feedback nonlinear systems with descriptor positive linear parts and interval state matrices, International Journal of Applied Mathematics and Computer Science 32(1): 5-10, DOI: 10.34768/amcs-2022-0001.
- [13] Kailath, T. (1980). Linear Systems, Prentice-Hall, Englewood Cliffs.
- [14] Kalman, R. (1960). On the general theory of control systems, Proceedings of the 1st IFAC Congress Automatic Control, Moscow, Russia, pp. 481-492.
- [15] Kalman, R. (1963). Mathematical description of linear dynamical systems, SIAM Journal of Control A 1(2): 152-192.
- [16] Klamka, J. (1991). Controllability of Dynamical Systems, Springer, Dordrecht.
- [17] Klamka, J. (2018). Controllability and Minimum Energy Control, Springer, Cham.
- [18] Mitkowski, W. (2019). Outline of Control Theory, AGH University Press, Krakow, (in Polish).
- [19] Schwarzenberg-Czerny, A. (1995). On matrix factorization and efficient least squares solution, Astronomy and Astrophysics Supplement 110: 405-410.
- [20] Veselić, B., Milosavljević, C., Peruničić-Draženović, B., Huseinbegović, S. and Petronijević, M. (2020). Discrete-time sliding mode control of linear systems with input saturation, International Journal of Applied Mathematics and Computer Science 30(3): 517-528, DOI: 10.34768/amcs-2020-0038.
- [21] Zak, S. (2003). Systems and Control, Oxford University Press, New York.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2156915-e69c-4a80-b7e6-b5dd2be69a07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.