PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multidisciplinary design and optimization of gas turbine engine low pressure turbine at preliminary design stage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The gas turbine engine has evolved rapidly during past decades to provide a reliable and efficient business solution for global transportation. The engine design process is clearly a large contributor to this evolution. This process is highly iterative, multidisciplinary and complex in nature. The success of an engine depends on a carefully balanced design that best exploits the interactions between numerous traditional engineering disciplines such as aerodynamics and structures as well as lifecycle analysis of cost, manufacturability, serviceability and supportability. To take into account all of these disciplines and optimization should be used. Currently most of present state-of-art numerical modelling methods, which are used mainly at detailed design stage, are unsuitable for this task due to very high computational time. The solution to this problem can be found in multidisciplinary design and optimization at preliminary design stage with use of simple 1-2D models. This paper presents current aero engine design process and indicates possibilities of future improvements by utilization of proposed methodology, which take into account aerodynamic, thermodynamic and structures (blade, fixing and disc) calculations, connected in one multidisciplinary model, which is suited for optimization. All disciplinary models are presented and described in this paper as well as connection between them, with study over design variable, goal function and constrains that should be used. Moreover, a strategy of optimization is proposed as well as methods for acceleration of optimization process by use of surrogate. The presentation of methodology is followed by example optimization of low-pressure aero engine turbine.
Słowa kluczowe
Twórcy
autor
  • Rzeszów University of Technology, The Faculty of Mechanical Engineering and Aeronautics Powstancow Warszawy 8, 35-959 Rzeszow, Poland tel.:+48 17 7432348, +48 17 8651450
autor
  • Rzeszów University of Technology, The Faculty of Mechanical Engineering and Aeronautics Powstancow Warszawy 8, 35-959 Rzeszow, Poland tel.:+48 17 7432348, +48 17 8651450
autor
  • École de Technologie Supérieure, Department of Mechanical Engineering 1100 Notre-Dame Street West, H3C 1K3 Montréal, Québec, Canada tel.: +1 514-396-8436, fax: +1 514-396-8530, web site: http://aeroets.etsmtl.ca􀀃
Bibliografia
  • [1] Girardeau, J., Pailhes, J., Sebastian, P., Pardo, F., Nadeau, J. P., Turbine Blade Cooling System Optimization, Journal of Turbomachinery, Vol. 135, Is. 6, Paper No. TURBO-12­1181,2013.
  • [2] De Maesschalck, C., Lavagnoli, S., Paniagua, G., Blade Tip Shape Optimization for Enhanced Turbine Aerothermal Performance, Journal of Turbomachinery, Vol. 136, Is. 4, Paper No. TURBO-13-1118,2013.
  • [3] Li, L., Song, L., Li, Y., Feng, Z., 2D Viscous Aerodynamic Shape Design Optimization for Turbine Blades Based on Adjoint Method, Journal of Turbomachinery, Vol. 133, Is. 3, 2010.
  • [4] Brophy, F., Mah, S., Turcotte, J., Preliminary Multi-Dysciplinary Optimisation (PMDO) an Example at Engine Level, RTO-EN-AVT-167, 2009.
  • [5] Panchenko, Y., Patel, K., Moustapha, H., Dowhan, M. J., Mah, S., Hall, D., Preliminary Multi-Dysciplinary Optimisation in Turbomachinery Design, Defense Technical Information Center, ADP014195, 2002.
  • [6] Chiong, M. S., Rajoo, S., Martinez-Dotas R. F., Costall, A. W., Engine turbocharger performance prediction: One-dimensional modelling of a twin entry turbine, Energy Conversion and Management, 57: 68-78, 2011.
  • [7] Jouybari, J., Eftari, M., Kaliji, H. D., Ghadak, F., Rad, M., Analytical modeling of performance characteristics of axial flow two-stage turbine engine using pressure losses models and comparing with experimental results, World Applied Sciences Journal 21 (9): 1250-1259, 2013.
  • [8] Abed, K. A., Performance estimation of axial flow reaction turbine, IE Journal, pp. 84, 2003.
  • [9] Schobeiri, M., Turbomachinery flow physics and dynamics performance, Springer Publication, 2005.
  • [10] Cohen, H., Rogers, G. F. C., Saravanamutto, H. I. H., Gas turbine theory, Longman Group Limited, 2001.
  • [11] Balje, O. E., Turbomachines: A guide to design selection and theory, John Wiley & Sons, New York 1981.
  • [12] Song, T. W., Kim, T. S., Ro, S. T., Performance prediction of axial-flow compressors using stage characteristics and simultaneous calculation of interstage parameters, Journal ofPower and Energy, 215: 89-98, 2000.
  • [13] Ainley, D.G., Mathieson, G.C.R., A method of performance estimation for axial-flow turbines, Aeronautical Research Counsil Reports and Memoranda, 1937.
  • [14] Dunham, J., Came, P. M., improvements to the Ainley/Matieson method of turbine performance prediction, ASME Journal ofEngineering for Power, pp. 252-256, 1970.
  • [15] Kacker, S. C., Okapuu, U., A mean line prediction method for axial flow turbine efficiency, ASME Journal ofEngineering for Power, pp. 111-119, 1982.
  • [16] Moustapha, S. H., Kacker, S. C., Tremblay, B., An improved incidence losses prediction method for turbine airfoils, Journal ofTurbomachinery, Vol. 112, pp. 267-272, 1990.
  • [17] Dubitsky, O., Loss models in axial (Reduced Through-flow) and Axcad/Axcent (NS Through- flow) solvers, Concepts NREC.
  • [18] Lipka, J., Wytrzymałość maszyn wirnikowych, Wydawnictwa Naukowo-Techniczne, Warszawa 1967.
  • [19] Zenkour, A. M., Mashat, D. S., Analytical and Numerical Solutions for a Rotating Annular Disk of Variable Thickness, Applied Mathematics, Scientific Research, 1, pp. 431-438, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2117d33-7e80-4452-8fc8-6e076c22d25f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.