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Abstract

The article discusses selected problems related to both principal component anal-
ysis (PCA) and factor analysis (FA). In particular, both types of analysis were
compared. A vector interpretation for both PCA and FA has also been proposed.
The problem of determining the number of principal components in PCA and fac-
tors in FA was discussed in detail. A new criterion for determining the number of
factors and principal components is discussed, which will allow to present most
of the variance of each of the analyzed primary variables. An efficient algorithm
for determining the number of factors in FA, which complies with this criterion,
was also proposed. This algorithm was adapted to find the number of principal
components in PCA. It was also proposed to modify the PCA algorithm using a
new method of determining the number of principal components. The obtained
results were discussed.

Keywords — principal component analysis, factor analysis, number of principal components,
number of factors, determining number of principal components, determining number of factors

1 Introduction

To be able to talk about factor analysis in the context of principal component analysis, the details
of both methods should be compared, starting with the algorithms and ending with the effects of
both types of analysis. Only selected problems related to principal component analysis (PCA)
and factor analysis (FA) will be discussed in this article. First of all, the common elements of
both analyzes will be presented, but also the differences between them. Principal component
analysis and factor analysis will be performed for the sample data set. In both analyzes, a
matrix of correlation coefficients will be used. Additionally, in the case of factor analysis,
considerations will be limited to exploratory factor analysis (EFA) using principal components
and Varimax rotation. Also, the elements on the diagonal of the correlation matrix will not be
reduced by the value of the common variances.
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A detailed comparison of the PCA with the FA will allow conclusions to be drawn about
the relationship between both types of analysis. This will allow a broader view of the criteria
for determining the number of principal components or factors in both types of analysis. As a
consequence, it will enable the development of a new efficient algorithm for determining the
number of factors in FA and principal components in PCA.

2 Preliminaries

This section introduces the basic concepts or notations that you will use later in this article. In
particular, this applies to some letter symbols, abbreviations, basic statistics, rotation of the co-
ordinate system, criteria for determining the number of factors or principal components, as well
as the factor analysis algorithm which is based on principal components. Principal components
analysis algorithm will not be presented here. This algorithm has already been presented in the
article [1].

2.1 Notes on symbols, abbreviations and terms

The article makes some assumptions about the understanding of symbols, abbreviations, and
terms. Due to the possibility of their misinterpretation, the above ambiguities will be explained
here:

• First, it is necessary to clarify the meanings of some of the abbreviations that were used
in the article. It is about explaining the following three abbreviations that appear many
times in the article:

– PCA – Principal Component Analysis,

– FA – Factor Analysis,

– PC – Principal component.

• An explanation should also be given regarding the meaning of both the uppercase ”X”
and ”Y” and the lowercase ”x” and ”y” that were used in the article. Capital letters ”X” or
”Y” have been reserved to denote primary variables that have not been processed in any
way. This means that the primary variables were not reduced by the constant component
(i.e. by the average value) and were also not standardized. On the other hand, lowercase
”x” and ”y” have been reserved for standardized variables.
The exception to the above rule are subsections 2.2.2 and 2.5.4. In subsection 2.2.2 a
lowercase letter ”x” denotes the random component of the primary variable. In sub-
section 2.5.4, where the Varimax algorithm is described, lowercase ”x” and ”y” were
reserved for the variables before rotation, and uppercase ”X” and ”Y” were reserved for
the variables after rotation.
Therefore, starting from section 3, apart from the case of presenting basic statistics of
primary variables, subsequent random variables will be consistently described with a
lowercase ”x”. This is because both PCA (as used in this article) and FA refer to stan-
dardized random variables.
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• In this article, both PCA and FA will use a matrix of correlation coefficients. Therefore,
in both types of analysis, it is sufficient to consider standardized primary variables instead
of the original primary variables. The assumption about the standardization of primary
variables is not a limitation here for three reasons:

1. Standardization of random variables does not affect the matrix of correlation coef-
ficients.

2. Both types of analysis work on standardized primary variables. FA identifies the
linear model of standardized primary variables as a function of independent fac-
tors (also standard random variables), while PCA transforms standardized primary
variables into independent principal components.

3. Using the transformation of formula (7), one can find the primary variables X from
the standardized primary variables x.

• The article will examine principal components analysis as well as factor analysis. Certain
algorithms exist in both types of analysis. They are either common or analogous. The
common algorithm is eigenproblem solving for the matrix of correlation coefficients.
However, an analogous algorithm is the algorithm for determining the number of prin-
cipal components in the principal components analysis, as well as the algorithm for de-
termining the number of factors in the factor analysis. An analogous algorithm is also
the rotation of the coordinate system. In principal components analysis, rotation enables
the identification of principal components, and in factor analysis, rotation enables the
identification of optimal factors.
When discussing analogous algorithms, referring to both factors and principal compo-
nents, the article will use a conglomerate of two words: ”factor/component”. In the
context of principal component analysis, this conglomerate will only refer to the princi-
pal components. In the context of factor analysis, this conglomerate will only refer to
factors.

2.2 Definitions of basic concepts

The author presents here the definitions of elementary concepts in a minimalistic way, without
analyzing them in depth. The relevant formulas will be listed here, which are used later in this
article. Among them there will be formulas defining basic statistics, such as mean, variance and
standard deviation, but also such definitions of such terms as random component of a random
variable, standardized random variable, or independent random variables.

2.2.1 The mean value of a random variable

A random variable X is considered. In particular, a random sample of cardinality n is available.
The elements of Xi represent the i− th implementation of the random variable. The estimator
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of the expected value of this random variable is its mean value:

X =
1

n

n∑
i=1

Xi. (1)

2.2.2 Random component of a random variable

In order to be able to assess the dispersion of variable X , its mean value can be subtracted from
its individual implementations. In this way, the random component x of the random variable X
is obtained. Individual implementations xi of the variable x will take the form:

xi = Xi −X. (2)

It is a random variable X reduced by a constant component.

2.2.3 Variance of a random variable

A measure of the variability of a random variable X is its variance. It is defined as the mean
value of the squares of individual implementations of the random component x of the random
variable X . The variance estimator v is given by the formula:

v =
1

d

n∑
i=1

x2
i . (3)

For d = n − 1 the variance estimator v is unbiased. For d = n it is the biased estimator. The
biased estimator gives an underestimated result of the variance. The ratio of the biased variance
estimator to the unbiased variance estimator is (n− 1) /n. The limit value of this ratio is:

lim
n→∞

(
n− 1

n

)
= 1. (4)

This means that as the value of n increases, the biased estimator follows the unbiased estimator.
Therefore, it can be said that for d = n the variance estimator is an asymptotically unbiased
estimator [2]. For example, for n > 30 the estimation error of the biased estimator is less than
3.3%, and for n > 150 the error is less than 0.67%. In practice, n is usually quite large, so for
the purposes of this article, it is assumed that the variance v will be calculated from the formula:

v =
1

n

n∑
i=1

x2
i . (5)

2.2.4 Standard deviation of a random variable

Another measure of the variability of a random variable X is its standard deviation defined as
the square root of the variance v. The estimator of the standard deviation will be denoted as s:

s =

√√√√ 1

n

n∑
i=1

x2
i . (6)
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2.2.5 Standardized random variable

If the variable X is normally distributed with the mean value X and the standard deviation s,
then it can be standardized by performing the following transformation:

xi :=
Xi −X

s
=

xi

s
. (7)

After standardization, the variable x has the mean value x = 0 and the standard deviation s = 1.

2.2.6 Pearson’s correlation coefficient

A measure of the relationship between two random variables X and Y is their covariance. The
normalized covariance to one is called the Pearson correlation coefficient:

RX,Y =

∑n
i=1

[(
Xi −X

) (
Yi − Y

)]√∑n
i=1

(
Xi −X

)2√∑n
i=1

(
Yi − Y

)2 . (8)

Using (2), the formula for the correlation coefficient can be transformed to the form:

RX,Y =

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

. (9)

In the numerator of the formula there is the dot product of two vectors x and y, and in the
denominator there is the product of the lengths of these vectors. This means that the correlation
coefficient is identical to the cosine of the angle between the two random vectors x and y [3]:

RX,Y =
x · y

∥x∥ · ∥y∥
= cos (x, y). (10)

Here it should also be added that the standardization of a random variable does not change the
correlation coefficient.

2.2.7 Determination coefficient

The coefficient of determination describes the level of common variance of two correlated stan-
dardized random variables. This coefficient is a good measure to describe the similarity between
the correlated random variables [1].

2.2.8 Independent random variables

If the random variables are independent, then the estimate of the correlation coefficient between
these variables is close to zero. Also, the value of the coefficient of determination, measuring the
level of common variance, describing the level of similarity between the two random variables
is close to zero. Here it should be noted that if the random variables are independent, then the
variance of the sum of these variables is equal to the sum of their variances [2].
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2.3 Rotation of the coordinate system

Given is an n-dimensional space with a Cartesian orthogonal coordinate system. In this space
there is a point whose coordinates define the n-element vector. The axes of a given coordinate
system are rotated around the center so that after rotation the system is still an orthogonal
system. In the new coordinate system (after rotation), the point will not change its position,
but will acquire new coordinates, i.e. the vector defining the point’s location will change. To
solve the problem of changes in vector components, the transformation of the coordinate system
should be described. This transformation is described by the orthogonal matrix R. Its elements
Rij are the cosines of the angles between the i− th axis of the new coordinate system and the
j − th axis of the old coordinate system (row number identifies the new axis, column number
identifies the old axis [1]). It is assumed that:

• The old coordinate system is the standard system. Its successive axes are successive
standard unit vectors that constitute the identity matrix.

• The new coordinate system is an orthogonal system whose axes are described in the old
coordinate system as vectors of unit length. Successive columns of these vectors will
form an orthogonal matrix U .

In such cases, the rotation matrix from the standard coordinate system to the final coordinate
system is a matrix whose rows are the direction vectors of the axis of the final coordinate system
[1]:

R = UT . (11)

2.3.1 Vector rotation

The rotation matrix R is used to find the coordinates of the vector v in the new coordinate
system that arose with the orthogonal rotation of the axes of the old coordinate system. The
vector v = [v1, . . . , v]

T in the new coordinate system will receive new components v′:

v′ := Rv. (12)

When the vector v specifies one point in space, it is represented as a row in some matrix. This
means that its transposition is available. Also the resulting vector will be a row in the matrix.
In order to rotate the vector represented in this way, both sides of the formula (12) should be
transposed:

(v′)
T
= (Rv)T . (13)

The result is a formula to rotate the row vector:

(v′)
T
= vTRT = vTU. (14)

If instead of single points vT and (v′)T we consider sets of points in the form of rectangular
matrices M and M ′, in which vectors vT and (v′)T will be single rows, then equation (14)
becomes the matrix equation:

M ′ = MU. (15)
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In this way, the rows of the factor loadings matrix are rotated in factor analysis, and the stan-
dardized primary variables are transformed into principal components in principal components
analysis.

2.3.2 Rotation on the plane

The n-dimensional space is considered. In this space, the orthogonal Cartesian coordinate sys-
tem is considered. This system is defined by n orthogonal axes X1, X2, . . . , Xn. In the above
space, any pair of different Xi and Xj axes (i.e. such that i ̸= j) define a plane. In a given
plane, rotation by angle φ means simultaneous rotation of both axes. As the position of both
axes changes, the coordinates of the points will also change. Usually the aim is to get to know
the new coordinates of the points in the new coordinate system. For this purpose, the orthogonal
rotation matrix R is calculated, and then new coordinates of the points are calculated using it.

In order to rotate the axis by a given angle φ on a given (Xi, Xj) plane, the rotation matrix
rij must be built for this angle. Denoting cosφ as c and sinφ as s, the rotation matrix in the
(Xi, Xj) plane is a modified identity matrix with four elements changed: rii = c, rij = s,
rji = −s, rjj = c [4]:

rij =



1 · · · 0
...

. . .
...

0 · · · 1

0

c s
1 · · · 0
...

. . .
...

0 · · · 1
−s c

0

1 · · · 0
...

. . .
...

0 · · · 1



(16)

2.3.3 Composition of rotations

If there is a need to make successive rotations on all (Xi, Xj) planes defined by different pairs
of axes (Xi ̸= Xj), then the resultant rotation matrix R is the product of successive rotation
matrices:

R =
∏

i=1,2,...,n−1
j=i+1,...,n

rij . (17)

The algorithm for finding the final matrix describing the resultant rotation is as follows:

1. R := I;

2. ∀i,j(i=1,2,...,n−1
j=i+1,...,n ) R := R · rij .
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Since the matrix rij describing rotation in a given plane is a modified identity matrix with
changed four elements, therefore in the second point of the algorithm there is no need to fully
multiply the matrices R and rij , but it is enough to modify the elements of the matrix R in the
i−th and the j−th rows, as well as in the i−th and j−th columns. First, the elements R′

ii and
R′

jj on the diagonal can be found, as well as the non-diagonal elements R′
ij and R′

ji:

R′
ii :=c2rii + sc (rij + rji) + s2rjj ;

R′
jj :=− c2rjj + sc (rij + rji)− s2rii;

R′
ij :=sc (rjj − rii) + c2rij − s2rji;

R′
ji :=scrjj − rii + c2rji − s2rij .

(18)

Also, the remaining elements in both rows and both columns should be calculated:

R′
ip := cRip + sRjp

R′
jp := −sRip + cRjp

R′
pi := cRpi + sRpj

R′
pj := −sRpi + cRpj

 p ̸= i, p ̸= j. (19)

2.4 Criteria for determining the appropriate number of principal components or
factors

In principal component analysis as well as in factor analysis, it is important to determine the
appropriate number of principal components and factors. Their number should at least allow for
sufficient representation or modeling of the primary variables. For this purpose, various criteria
are used [5, 6, 7]: the criterion of the scree plot, the criterion of the total variance explained by
the factors/components, the Kaiser criterion or the unit eigenvalue criterion, the criterion of the
number factors/components not greater than half the number of the primary variables. These
criteria will be discussed in more detail:

• Scree Plot Criterion: This is a graphical method in which the plot shows successive
eigenvalues, from largest to smallest. The shape of the graph resembles a scree. Usually,
at the beginning, the curve drops sharply, and in the later part, behind the so-called ”el-
bow”, it descends more gently. As many factors/components are taken as the eigenvalues
are located on the slope of the scree. In practice, it is assumed that there are as many
factors/components as the eigenvalues are above the ”elbow” of the scree.

• Percentage criterion of the explained variance: It is assumed that there are so many
factors/components that the sum of the eigenvalues associated with the successive fac-
tor/component is not less than the established percentage threshold related to the trace of
the correlation matrix.

• Eigenvalue criterion called the Kaiser criterion: It is assumed that there should be as
many factors/components as the eigenvalues of the correlation matrix are not less than
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one. A single standardized variable has a variance of one. Any factor/component with an
eigenvalue greater than one accounts for more variance than a single variable. The ratio-
nale for using the eigenvalue criterion is that each factor/component should represent or
explain at least one primary variable. That is, only factors/components with eigenvalues
not less than one should be kept. Since the goal of both PCA and FA is to reduce the
total number of factors/components, each factor/component should account for a greater
variance than the variance of a single primary variable.

• The criterion of half the number of primary variables: It is assumed that the number of
factors/components should not exceed half the number of all primary variables. If the
identification of principal components is treated as lossy compression, it is important
that this compression significantly reduces the size of the stored set. A file that is half the
size of the original file can be considered sufficiently compressed. On the other hand, the
number of factors/components in the factor/component model, not greater than half of
the primary variables (including potentially possible factors/components), is satisfactory
from the point of view of the simplicity of the model.

It should be emphasized at this point that none of the above criteria should be regarded as
absolute criteria, but rather as subsidiary criteria. First of all, it may happen that particular
criteria may produce different or inconclusive results:

• The scree criterion may not apply as the two phases clearly separated by a so-called
”elbow”’ may not be visible in the scree plot.

• The percentage criterion of the explained variance may also give unsatisfactory results,
despite the relatively large variance represented. The number of factors/components re-
sulting from this criterion may be too small to adequately represent the primary variables.

• The Kaiser criterion can also falsify the number of factors/components. For example,
for data describing the petals of an iris flower [8], the second eigenvalue for the correla-
tion coefficient matrix is less than one. Nevertheless, only two factors/components can
satisfactorily represent the primary variables [1].

• Also, the criterion of half the number of primary variables may be too strict. For ex-
ample, according to this criterion, with an odd number of variables, the number of fac-
tors/components should not be greater than (n− 1)/2. Meanwhile, it would be better if
this number was (n+ 1)/2.

In such an ambiguous situation, the number of factors/components should be decided by ana-
lyzing the full context of the study.

2.5 Factor analysis algorithm

In factor analysis, on the basis of the analysis of the set of observed correlated random variables,
linear models of these variables are built with respect to the set of factors that are independent
random variables with unit variance. Factors are subject to interpretation. If the interpretation
of the factors is made, then through these interpreted factors conclusions can be drawn about
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the causes of the variability of the observed variables. Various approaches to FA are mentioned
in the literature. These approaches relate to the types of FA, algorithms used, as well as rotation
methods (e.g. [6, 7, 9, 10, 11]:

• There are two types of factor analysis. The first type is exploratory factor analysis (EFA),
the second is confirmatory factor analysis (CFA). In exploratory factor analysis, neither a
priori relationship between the observed variables and factors nor the number of factors
is assumed. On the other hand, confirmatory factor analysis presupposes some knowl-
edge of the model, which may be confirmed during the course of it. In practice, some
researchers may run EFA first and then use CFA to validate or confirm EFA results. In
turn, EFA is not a necessary condition for the CFA [11].

• In FA, in the context of the algorithms used, there are at least two different approaches:
the principal component approach and the maximum likelihood approach.

• The factors obtained from the principal components need not be final factors. Factors can
be rotated for simpler interpretation. The main division of rotation methods is between
orthogonal and oblique rotation. Different possible rotation criteria lead to different
possible rotation methods. Hence, at least the following methods of factor rotation are
known: Varimax - orthogonal rotation, Quartimax - orthogonal rotation, and Oblimin -
oblique rotation.

Only some aspects of the factor analysis will be presented in this article:

• Exploratory Factor Analysis,

• Method based on principal components,

• Varimax rotation.

Since in factor analysis standardized primary variables are modeled as a function of independent
factors, therefore, without losing generality in the remainder of this article, all mathematical
formulas describing factor analysis will only apply to standardized primary variables.

Having a set of n random variables x = [x1, . . . , xn], we can proceed to FA. In the
n−dimensional space defined by these variables, m measurement points are considered. The
data is stored in the form of the xm×n matrix:

x =

x11 · · · x1n

...
...

...
xm1 · · · xmn

 . (20)

The individual columns of the x matrix contain n successive xi random variables. Each i−th
random variable creates a column random vector xi (i = 1, 2, . . . ,m):

xi = [x1i, x2i, . . . , xmi]
T (21)

In turn, the j−th row of the X matrix represents a single measurement point pj , containing the
j−th elements of successive random variables xi (i = 1, 2, . . . , n):

pj = [xj1, xj2, . . . , xjn]. (22)
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2.5.1 Steps of the factor analysis algorithm

1. For all n random variables stored in the matrix x, the matrix of correlation coefficients R
is calculated:

R =

 1 · · · R1n

...
. . .

...
Rn1 · · · 1

 (23)

Its components are Rij elements, which are the correlation coefficients (9) between all
the xi and xj variables.

2. For the matrix of correlation coefficients R, it is necessary to solve the eigenproblem. As
a result, a diagonal matrix Λ is obtained containing on the diagonal sorted non-increasing
successive eigenvalues of λi, representing the variances of potential factors:

Λ =

λ1 · · · 0
...

. . .
...

0 · · · λn

 . (24)

3. The matrix U is also obtained, which in its columns contains successive eigenvectors
corresponding to the successive eigenvalues:

U =

U11 · · · U1n

...
. . .

...
Un1 · · · Unn

 . (25)

4. From the Λ matrix, a diagonal S matrix containing standard deviations of potential fac-
tors is calculated:

S =
√
Λ =


√
λ1 · · · 0
...

. . .
...

0 · · ·
√
λn

 . (26)

5. Using the matrices U and S there is a square matrix of factor loadings L:

L = U · S =

L11 · · · L1n

...
. . .

...
Ln1 · · · Lnn

 . (27)

6. If we assume that F = [f1, . . . , f2]
T is the set of independent standardized random

variables called factors, then the set of standardized x = [x1, . . . , xn]
T variables can

now be represented as a linear model with respect to the set of independent factors:x1

...
xn

 =

L11 · · · L1n

...
. . .

...
Ln1 · · · Lnn

 ·

f1...
fn

 . (28)
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2.5.2 Factors reduction in the factor model

Since the factors f1, . . . , fn are standardized independent random variables, the squares of the
Lij elements contained in the L matrix represent the variances that are contributed by the indi-
vidual independent factors fi to the individual random variables x1, . . . , xn. In the Λ matrix,
the individual eigenvalues are sorted non-ascending. Therefore, the influence of the first fac-
tors on the variables xi dominates over the last ones. Therefore, the variables xi can be made
dependent on the first k dominant factors, ignoring the insignificant factors.

The influence of the omitted factors can be presented as the error vector E = [ε1, . . . , εn]
T ,

which represents the uncontrollable but also independent of the factors fj disturbances, having
the nature of random errors:x1

...
xn

 =

L11 · · · L1k

...
. . .

...
Ln1 · · · Lnk

 ·

f1...
fk

+

ε1...
εn

 . (29)

The square matrix of factor loadings L (27), which originally had the size n × n, was reduced
in formula (29) to a rectangular matrix of size n × k (k < n). In the L matrix the number of
rows remained the same, and the number of columns decreased:

L =

L11 · · · L1k

...
. . .

...
Ln1 · · · Lnk

 . (30)

Expression (29) is a model of the primary variables xi (i = 1, . . . , n) with respect to the
independent factors fj (j = 1, . . . , k) and the independent vector εi (i = 1, . . . , n). Both the
primary variables xi and the factors fj are standardized random variables with a unit variance
(and therefore also with a unit standard deviation).

Each primary variable xi is the sum of the random variables derived from the factors and
from the error. The variance contributed to a given variable xi by the factor fj is L2

ij . Since
the factors are independent random variables, the variance vi contributed to the variable xi by
k factors fj (j = 1, . . . , k) is equal to the sum of the variances contributed by these factors:

vi =

k∑
j=1

L2
ij . (31)

For each primary variable, the value of vi determines the level of variance reproduced by using
k factors in the model (29). The components vi form the vector of common variances V :

V =

v1...
vn

 . (32)

The diversity of the elements of Vi in the vector V shows that individual variables are modeled
with different accuracy by a selected set of factors. A reasonable model should represent most of

46



Principal Component Analysis versus Factor Analysis

the variance of the modeled primary variable. Most means at least 50%. This level of explaining
the variance of the primary variable can be found in [5]. If the condition vi ≤ 0.5 holds for
any i, it is information that too few factors were used to explain the primary variables. One or
more of the criteria described in Section 2.4 may be used to determine the appropriate number
of factors.

2.5.3 Modeling of primary variables

Expression (29) is sufficient to explain the influence of latent factors. It will allow to determine
which variable to what extent depends on a given factor. More precisely, the analysis of the
matrix (30) is sufficient to explain the influence of latent factors on the primary variables:

• By estimating the vector V (32) with it, it is possible to obtain information about the
level of variance of primary variables xi explained by selected factors.

• By rotating the factor loadings contained in the rows of this matrix, it is also possible to
improve the efficiency of the factor interpretation.

Unfortunately, the model (29) is not sufficient for a reliable simulation of xi variables. This
model does not take into account the influence of random disturbances on the primary variables.
To get rid of this deficit, model (29) should be extended with a component that will describe the
random disturbance vector E.

Vector E is influenced by omitted factors fk+1 . . . fn. They can be replaced by one inde-
pendent unique factor f0. The standardized variable xi has a unit variance. The component vi
of the vector V (32) describes that part of the variance that is explained by k factors. Since all
the selected factors and the factor f0 are independent random variables, the factor f0 should
contribute enough variance to the variable xi so that its total variance (both that derived from
the independent factors f1, . . . , fk and that derived from the independent factor f0) sums up to
ones. Therefore, the error ei of the variable xi can be expressed in the following form:

εi =
√
1− vi · f0. (33)

Denoting by wi the standard deviation
√
1− vi of the error εi, the error vector E takes the

following form:

E =

ε1...
εn

 =

w1

...
wn

 · f0. (34)

In this way, the factor model suitable for simulating the influence of factors on the primary
variables, also considering the influence on the primary variables of uncontrolled random dis-
turbances, takes the final form:x1

...
xn

 =

L11 · · · L1k

...
. . .

...
Ln1 · · · Lnk

 ·

f1...
fk

+

w1

...
wn

 · f0. (35)

In this model, each primary variable is linearly dependent on at least one common factor fi (i =
1, . . . , k) and on one specific (unique) factor f0.
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2.5.4 Varimax rotation

The Kaiser-developed Varimax rotation procedure [12] is probably the most popular rotation
method. It aims to lead to a simple solution in FA. For Varimax rotation, a simple solution
means that each factor has a small number of large factor loadings and a large number of zero
(or small) factor loadings. This simplifies the interpretation because after Varimax rotation, each
primary variable is usually associated with one or at most a small number of factors. Formally,
Varimax looks for the rotation of the initial factors so that the variance of the factor loadings is
maximized [13]. Later in this subsection, the Varimax rotation procedure will be based on the
original Kaiser article [12].

The idea behind Varimax rotation is that the factor loadings are optimized separately on
each of the planes defined by a pair of coordinate axes. If rotation on a given plane does not
increase the value of the objective function, then this rotation is ignored by moving to the next
plane. Before starting the rotation procedure, the row vectors of the factor loadings matrix are
normalized to the unit length. After the rotation is complete, the rotated vectors will be restored
to their original length [12].

Two columns in the factor loadings matrix are considered, which will form a matrix of
size n × 2. This matrix represents a set of points on the plane labeled OXY . These points
were created by projecting the vectors representing the primary variables to the OXY plane.
These points are a two-dimensional representation of these primary variables. The i − th row
of the matrix successively represents the i − th primary variable in the form of a vector with
coordinates (xi, yi). An orthogonal rotation matrix R is also given, which on the OXY plane
describes the rotation of the coordinate system by a given angle ϕ:

R =

[
cosϕ sinϕ
− sinϕ cosϕ

]
(36)

Its transposition RT will be used to transform the points, i.e. to rotate row vectors:

RT =

[
cosϕ − sinϕ
sinϕ cosϕ

]
. (37)

After the coordinate system is rotated in the new coordinate system, the point with the coordi-
nates (xi, yi) becomes the point with the new coordinates (Xi, Yi). Coordinate transformation
can be described by matrix multiplication:X1 Y1

...
...

XN YN

 :=

x1 y1
...

...
xn yn

 ·
[
cosϕ − sinϕ
sinϕ cosϕ

]
. (38)

For the i− th point (i− th row in the matrices) we get two equations:{
Xi := xi cosϕ+ yi sinϕ,

Yi := −xi sinϕ+ yi cosϕ.
(39)
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Hence: {
dXi/dϕ = Yi,

dYi/dϕ = −Xi.
(40)

The maximized objective function has the form:

n2vxy = n
∑(

X2
)2 − (∑

X2
)2

+ n
∑(

Y 2
)2 − (∑

Y 2
)2

. (41)

Using the equation (40), the objective function (41) can be differentiated with respect to the
angle ϕ and after differentiation it can be compared to zero:

n
∑

XY
(
X2 − Y 2

)
−
∑

XY
∑(

X2 − Y 2
)
= 0. (42)

To solve the problem in the space of variables before rotation (x and y), the formula (39) should
be used. After transformation, the relationship describing the angle of rotation on the OXY
plane is obtained:

4ϕ = arctan
2
[
n
∑(

x2 − y2
)
(2xy)−

∑(
x2 − y2

)∑
(2xy)

]
n
{∑[

(x2 − y2)
2 − 2xy2

]}
−

{
[
∑

(x2 − y2)]
2 − [

∑
(2xy)]

2
} . (43)

If we substitute ui = x2
i − y2i and vi = 2xiyi, then the above expression reduces to a simpler

form:

4ϕ = arctan
2 [n

∑
uivi −

∑
ui

∑
vi]

n
∑

(u2
i − v2i )−

[
(
∑

ui)
2 − (

∑
vi)

2
] . (44)

In the range of full rotation from −1800 to +1800, the functions sin 4ϕ and cos 4ϕ reach both
negative and positive values (Figure 1). Therefore, the expression arctan (·) is ambiguous.
As a result of examining the signs of the first and second derivative of the numerator and the
denominator in the expression (44), Kaiser’s work [12] presents ranges of the angle ϕ depending
on the signs of the numerator and the denominator of this expression. Table 1 shows the ranges
of the 4ϕ angle values. These ranges are consistent with the ranges of variability of the sin and
cos functions presented in Figure 1.

Table 1: The relationship of the solution of the equation (44) with the signs of its
numerator and denominator

Numerator sign

+ −
Denominator + 00 to 900 −900 to 00

sign − 900 to 1800 −1800 to −900
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Figure 1: Waveforms of sine and cosine functions

3 Principal Component Analysis vs. Factor Analysis

In order to be able to talk about factor analysis in the context of principal components analysis,
both types of analysis should be compared. For the sample dataset, PCA will be performed first,
then FA. This will allow conclusions to be drawn about the specific relationships between PCA
and FA.

3.1 Analyzed data: weather information (Dataset No. 1)

The data set containing 7 random variables was used for the analysis. The set consists of 49 987
data records that were measured at different times of the day in many weather stations from
January 1, 2000 to September 20, 2018. In the further part of the presented analysis, subse-
quent variables will be marked with symbols X1, · · ·X7. The content of individual variables is
interpreted as follows:

• X1 – Sea-level pressure in millibar (mbar);

• X2 – Air temperature in degree Celsius (0C);

• X3 – Dew point temperature in degree Celsius (0C);

• X4 – Wind direction in degrees of arc (0 – the degree symbol);

• X5 – Wind speed in meters per second (m/sec);

• X6 – Visibility in metres (m);

• X7 – Time of measurement - it is a number in the interval [0, 1). The left endpoint is
closed, the right endpoint is open. The lower limit is 00 : 00 and the upper limit is
24 : 00.
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Table 2: Primary variables and their statistics

X1 X2 X3 X4 X5 X6 X7

Sea level Air Dew point Wind Wind Visibility Time of
pressure temperature temperature direction speed measurement
[mbar] [0C] [0C] [0] [m/s] [m]

Mean 1016.378 10.221 5.314 180.805 3.397 18890.569 0.479

Median 1016.2 10 5.6 180 3 20000 0.46

Mode 1014.3 1.3 11.5 270 3 30000 0.75

Standard
8.400 8.972 7.263 100.781 2.065 9769.928 0.289

deviation

Minimum 975.2 -18.6 -20.8 0 0 0 0

Maximum 1045.8 36.7 22.1 360 24 80000 0.96

Basic statistics were estimated for all seven variables. The mean values of the variables, their
medians and modes were adopted as the measures of the location of random variable distribu-
tions. Standard deviations for all variables as well as their minima and maxima were assumed
as measures of dispersion. The results are presented in Table 2. The matrix of correlation co-
efficients (Table 3) and the matrix of determination coefficients (Table 4) were also estimated
for all seven variables. The coefficient of determination (equal to the square of the correlation
coefficient) defines the degree of similarity of random variables measured as a percentage of
their common variance. Table 4 shows the values of the determination coefficients given as a
percentage. Their analysis shows that in most cases the analyzed variables are characterized by
a low level of mutual similarity (mutual correlation). Only air temperature and dew point tem-
perature are strongly correlated. In this case, the common variance measured by the coefficient
of determination is over 76%. The coefficient of determination estimated for temperature and
visibility indicates their common variance at a level slightly greater than 32%. The remaining
determination coefficients do not exceed 10%.

3.2 Common elements in Principal Components Analysis and Factor Analysis

Both types of analyzes have common elements in their algorithms. The common element of
both is solving the eigenproblem for the matrix of correlation coefficients. Therefore, this prob-
lem has been solved here. The non-increasing ordered eigenvalues obtained for the matrix of
correlation coefficients from Table 3 are presented in Table 5. Figure 2 shows the scree plot for
the obtained eigenvalues. The successive i−th eigenvalue corresponds to the successive i−th
eigenvector Ui:

Ui = [u1i, · · · , uni]
T
. (45)

51



Zenon Gniazdowski

Table 3: The matrix of correlation coefficients

x1 x2 x3 x4 x5 x6 x7

x1 1 -0.197 -0.257 -0.110 -0.108 -0.032 -0.010

x2 -0.197 1 0.875 0.025 -0.038 0.568 0.100

x3 -0.257 0.875 1 0.031 -0.142 0.313 0.010

x4 -0.110 0.025 0.031 1 0.311 0.050 0.034

x5 -0.108 -0.038 -0.142 0.311 1 0.146 0.044

x6 -0.032 0.568 0.313 0.050 0.146 1 0.122

x7 -0.010 0.100 0.010 0.034 0.044 0.122 1

Table 4: The matrix of determination coefficients
x1 x2 x3 x4 x5 x6 x7

x1 100% 3.89% 6.63% 1.21% 1.17% 0.10% 0.01%

x2 3.89% 100% 76.49% 0.06% 0.15% 32.31% 1.01%

x3 6.63% 76.49% 100% 0.09% 2.03% 9.77% 0.01%

x4 1.21% 0.06% 0.09% 100% 9.65% 0.25% 0.12%

x5 1.17% 0.15% 2.03% 9.65% 100% 2.12% 0.20%

x6 0.10% 32.31% 9.77% 0.25% 2.12% 100% 1.48%

x7 0.01% 1.01% 0.01% 0.12% 0.20% 1.48% 100%

Table 5: Eigenvalues of the matrix of correlation coefficients

Eigenvalue No. 1 2 3 4 5 6 7

Eigenvalue 2.290 1.390 1.058 0.919 0.751 0.518 0.075

Successive eigenvectors corresponding to the eigenvalues in Table 5 form the columns of the
matrix U :

U = [U1, . . . , Un] =

u11 · · · u1n

...
. . .

...
un1 · · · unn

 . (46)

For the considered data, the matrix of eigenvectors has the following form:

U =



−0.231 −0.218 0.579 0.579 −0.367 −0.306 0.030
0.633 −0.097 0.028 0.084 −0.063 −0.193 −0.736
0.583 −0.177 −0.187 −0.018 −0.219 −0.379 0.634
0.067 0.625 −0.146 0.089 −0.716 0.251 −0.025
0.005 0.696 0.057 0.197 0.432 −0.534 0.041
0.438 0.122 0.383 0.350 0.319 0.609 0.228
0.099 0.149 0.677 −0.699 −0.115 −0.081 0.042


. (47)
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Figure 2: Scree plot for Dataset No. 1

Table 6: Statistics of principal components

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Standard deviation 1.513 1.179 1.028 0.959 0.866 0.720 0.275

Variance 2.290 1.390 1.058 0.919 0.751 0.518 0.075

3.3 Principal component analysis

The primary data is described in a standard coordinate system. Principal component analysis
describes this data in a coordinate system defined by eigenvectors. Formula (11) finds the
transition matrix (R) from the standard coordinate system to the eigenvectors system. Formula
(15) makes it possible to find the description of primary variables in the new coordinate system,
thus finding a matrix containing the principal components PC :

PC = x ·RT . (48)

As a result of the transformation (48), seven principal components were obtained. These are
uncorrelated random variables, the statistics of which are presented in Table 5. Comparing
the results presented in Table 5 with the results in Table 4, it can be seen that the variances
of individual principal components are equal to the successive eigenvalues estimated for the
correlation coefficient matrix contained in Table 5.

Having a set of primary variables and a set of principal components, the correlation coeffi-
cients between primary variables and principal components were estimated (Table 7). Based on
the correlation coefficients, the coefficients of determination between the variables from both
sets were found. Table 8 contains information which variable and in what percentage is rep-
resented by successive principal components. It can be seen that most of the variances of the
variables x2 and x3 represent the first principal component, PC1. This component represents
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Table 7: The correlation coefficients between the primary variables, and the principal
components

PC1 PC2 PC3 PC4 PC5 PC6 PC7

x1 -0.349 -0.257 0.595 0.555 -0.318 -0.220 0.008

x2 0.957 -0.114 0.029 0.081 -0.054 -0.139 -0.202

x3 0.882 -0.208 -0.193 -0.017 -0.190 -0.273 0.174

x4 0.101 0.737 -0.150 0.085 -0.620 0.181 -0.007

x5 0.008 0.820 0.058 0.189 0.375 -0.384 0.011

x6 0.663 0.144 0.394 0.335 0.276 0.438 0.063

x7 0.150 0.176 0.696 -0.670 -0.100 -0.058 0.012

Table 8: Percentage values of the coefficients of determination between primary vari-
ables and principal components

PC1 PC2 PC3 PC4 PC5 PC6 PC7

x1 12.21% 6.60% 35.43% 30.82% 10.09% 4.84% 0.01%

x2 91.65% 1.31% 0.08% 0.65% 0.29% 1.93% 4.08%

x3 77.84% 4.34% 3.71% 0.03% 3.60% 7.45% 3.03%

x4 1.03% 54.28% 2.26% 0.73% 38.43% 3.26% 0.00%

x5 0.01% 67.27% 0.34% 3.57% 14.03% 14.77% 0.01%

x6 44.00% 2.08% 15.49% 11.23% 7.62% 19.19% 0.39%

x7 2.25% 3.09% 48.45% 44.86% 1.00% 0.34% 0.01%

over 91% of the variance of the x2 variable and over 77% of the variance of the x3 variable.
The second principal component PC2 represents more than half of the variance of the variable
x4 and x5. The common variance of these variables with the principal component PC2 exceeds
the level of 54% and 67%, respectively. The variables x1, x6 and x7 do not have a principal
component that would represent most of their variance. For these variables, more components
are needed to represent at least half of their variance. The principal components PC3 and PC4

represent most of the variances of the variables x1 and x7. In turn, the principal components
PC1 and PC3 contain most of the variance of the variable x6.

Table 9 also shows the coefficients of determination between primary variables and princi-
pal components, but now not in percent, but in absolute numbers. Additionally, it is enriched
with sums of elements in rows and columns:

• The sum of the determination coefficients in each row is equal to one. This is the vari-
ance of the standardized primary variable. The primary variable shared its variance with
successive princupal components.

• The sum of the determination coefficients in each column is equal to the eigenvalue, i.e.
the variance of the corresponding principal component. The principal component owes
its variance to a certain part of the variance of the primary variables.
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Table 9: Coefficients of determination between primary variables and principal compo-
nents with sums in rows and columns

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Σ

x1 0.122 0.066 0.354 0.308 0.101 0.048 0.000 1

x2 0.917 0.013 0.001 0.007 0.003 0.019 0.041 1

x3 0.778 0.043 0.037 0.000 0.036 0.075 0.030 1

x4 0.010 0.543 0.023 0.007 0.384 0.033 0.000 1

x5 0.000 0.673 0.003 0.036 0.140 0.148 0.000 1

x6 0.440 0.021 0.155 0.112 0.076 0.192 0.004 1

x7 0.022 0.031 0.484 0.449 0.010 0.003 0.000 1

Σ 2.290 1.390 1.058 0.919 0.751 0.518 0.075 7.00

Table 10: The cumulative variances of the primary variables represented by adding
successive factors

PC1 PC2 PC3 PC4 PC5 PC6 PC7

x1 12.21% 18.81% 54.24% 85.06% 95.15% 99.99% 100%

x2 91.65% 92.96% 93.04% 93.69% 93.99% 95.92% 100%

x3 77.84% 82.18% 85.89% 85.92% 89.52% 96.97% 100%

x4 1.03% 55.31% 57.58% 58.30% 96.74% 100.00% 100%

x5 0.01% 67.28% 67.62% 71.18% 85.21% 99.99% 100%

x6 44.00% 46.08% 61.57% 72.80% 80.41% 99.61% 100%

x7 2.25% 5.33% 53.78% 98.65% 99.65% 99.99% 100%

Figure 3: The level of representation of variances of primary variables by successive
principal components

55



Zenon Gniazdowski

Table 10 presents the cumulative values of the coefficients of determination in the rows. Cu-
mulative values explain the level of representation of primary variables by successive principal
components. Figure 3 shows a graphical representation of Table 10. In Figure 3 it is possible to
see how many principal components are needed to achieve a satisfactory level of representation
of the variance of individual primary variables. It can be seen that one principal component
PC1 represents more than 70% of the variance of the primary variable x3 and more than 90%
of the variable x2. On the other hand, two principal components are not sufficient to represent
more than half of the variance of the primary variables x1 and x7.

3.3.1 Geometric interpretation of principal components

Correlation coefficients have the interpretation of cosines between the random components of
the respective random variables [3]. The square of the correlation coefficient between two ran-
dom variables is called the coefficient of determination and measures the level of their common
variance [1]. In other words, the coefficient of determination measures the level of similarity of
the random components of two random variables. On the other hand, if the random variables
are independent, then the variance of the sum of these variables is equal to the sum of their
variances [14].

Table 7 contains the correlation coefficients between successive primary variables and prin-
cipal components. Each of the rows in this table, as well as in Tables 8 and 9, relates to a
corresponding standardized primary variable. The coefficients of determination in each row of
Table 9 sum up to one, and thus to the variance of this standardized primary variable. This
means that standardized primary variables can be decomposed into the sum of independent
(orthogonal) random variables.

Since the coefficient of determination measures the level of common variance of two ran-
dom variables, the above-mentioned summed independent random variables are part of the prin-
cipal components, and the variance of each (successive) of these independent random variables
is the fraction of the variance of the successive principal components.

The variance of a random variable is equal to the square of its standard deviation. Suc-
cessive independent random variables can be interpreted geometrically as orthogonal anchored
vectors at the origin of the coordinate system. The lengths of these vectors are equal to the
standard deviations of these successive variables. The length squares of these vectors are equal
to the variances of the random variables. Since vectors are orthogonal, on the basis of the
Pythagorean theorem, the square of the length of their sum is the sum of the squares of their
length. On the other hand, the length of the result vector is equal to the root of the sum of the
squares of the lengths of the summed vectors.

The above analysis leads to the geometric interpretation of PCA in the vector space [1].
The correlation coefficients between the i − th primary variable and the following principal
components (i− th row in Table 7) can be interpreted as components of the vector representing
the primary variables in the coordinate system composed of eigenvectors. Due to the existing
analogy between independent random variables and orthogonal vectors, a geometric interpre-
tation can be used to describe the behavior of such random variables, and in particular, the
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Pythagorean theorem can be used1. Since each row is a vector representing a single primary
variable, the cosines between successive vectors are identical to the correlation coefficients be-
tween the successive primary variables that these vectors represent.

3.3.2 Determination of the number of principal components

In PCA, there are as many components as there are primary variables. However, not all of them
should be identified. Principal components that carry a minimal amount of information can be
omitted. This means that those with the smallest variance can be ignored. The rejection of the
principal components with the smallest variance leads to a reduction of the space dimension in
the case of the above-described vector representation of primary variables by principal compo-
nents. Leaving the k principal components with the largest variance leads to the rejection of the
n − k principal components with the smallest variance. The rejection of the n − k principal
components is equivalent to the rejection of the n− k columns from Table 7.

In order to solve the problem of determining the appropriate number of principal compo-
nents, various previously known criteria for determining their number should be discussed:

• The scree plot criterion does not apply here as the scree plot (Figure 1) does not show
two phases that are clearly separated by a so-called ”elbow”. The first phase of rapid
descent and the second phase of gentle descent are missing here.

• The percentage criterion of the part of the variance explained by the principal compo-
nents requires examination of Table 11. This table contains the distribution of variance
explained by the successive principal components. It is assumed that there should be so
many principal components that the sum of the eigenvalues associated with successive
principal components is not less than the specified percentage threshold in relation to
the trace of the correlation matrix. The selection of the three principal components will
explain less than 70% of the variance of the primary variables. If we assume that the prin-
cipal components should explain at least 80% of the variance of the primary variables,
then the four principal components satisfactorily meet this criterion.

• Since the third eigenvalue is the smallest eigenvalue, not less than one, the Kaiser crite-
rion suggests a selection of three principal components.

• The criterion of half the number of primary variables suggests choosing three out of
seven principal components.

As can be seen, different criteria used can lead to different results. One more criterion will
therefore be examined here. This criterion, called the ”Minimum Communality Criterion”,
was signaled enigmatically in the book [5]. A similar criterion was independently proposed in

1Analogous vector interpretation can be applied to principal components. Each j − th principal com-
ponent can be decomposed into the sum of mutually independent (orthogonal) random variables. In the
same way, the variance of each principal component consists of the variance of these mutually indepen-
dent (orthogonal) components. The correlation coefficients between the j − th principal component and
successive primary variables (j − th column in Table 7) can be interpreted as components of the vector
representing the principal components in the standard coordinate system.
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Table 11: The percentage of variances explained by the successive principal compo-
nents

No. Eigenvalue
Cumulative Percentage of variance Cumulative
eigenvalues explained by each PC percentage of variance

1 2.290 2.290 32.71% 32.71%

2 1.390 3.680 19.85% 52.56%

3 1.058 4.737 15.11% 67.67%

4 0.919 5.656 13.13% 80.80%

5 0.751 6.407 10.72% 91.52%

6 0.518 6.925 7.40% 98.92%

7 0.075 7.000 1.08% 100.00%

[1]. This criterion will be shown in the example presented in Table 12. It was assumed that
the primary variables x1, . . . , x7 will be represented by the three principal components PC1,
PC2 and PC3. The table shows what level of variance of the xi variable is represented by the
prinipal component PCj . For example, 91.65% of the variance of the primary variable x2 is
represented by the principal component PC1. The same principal component represents the
primary variables x4, x5 and x7 to a very small extent. The level of representation of these
variables by the principal component PC1 amounts to 1.03%, 0.01% and 2.27%, respectively.
The row marked as ”Average in column” in Table 12 is identical to the column ”Percentage of
variance explained by each PC” in Table 10. Table 11 refers to the eigenvalues. Eigenvalues are
identical to variances. A comparison of Table 11 and Table 12 shows that the results in Table
11 refer to the mean variance of the primary variables explained by each principal component.
Looking at the last row in the last column of Table 12, it can be seen that the three principal
components contain just over 67% of the mean variance of all primary variables. However, the
variance of single primary variables is represented to a varying degree. The variance of the
primary variables x1, x4 and x7 is represented in slightly more than half, and the variance of
the primary variable x2 is represented in more than 93%.

The above observations confirm that there is an additional criterion for determining the ap-
propriate number of principal components with regard to the degree of reconstruction of the
variance of the primary variables. The application of this criterion will allow to determine the
appropriate number of principal components in such a way that the level of variance represen-
tation of each of the primary variables is at least satisfactory, not lower than the set threshold
[1]. There should be enough principal components so that most of the variance of each of the
primary variables can be reproduced. Common sense suggests that most means more than half
the variance.

Of course, there still remains the technical problem of applying this criterion. The criterion
presented here requires identifying all the principal components, then calculating the correlation
coefficients and the coefficients of determination between the primary variables and the prin-
cipal components, then determining which principal components are necessary and rejecting
the others. Compared to the previously known criteria, the criterion presented here has greater
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Table 12: The level of representation of primary variables by the three principal com-
ponents

PC1 PC2 PC3 Σ

x1 12.21% 6.60% 35.43% 54.24%

x2 91.65% 1.31% 0.08% 93.04%

x3 77.84% 4.34% 3.71% 85.89%

x4 1.03% 54.28% 2.26% 57.58%

x5 0.01% 67.27% 0.34% 67.62%

x6 44.00% 2.08% 15.49% 61.57%

x7 2.25% 3.09% 48.45% 53.78%

Average in column 32.71% 19.85% 15.11% 67.67%

computational complexity, both in terms of time and memory complexity:

• The proposed criterion in the form presented above has a greater time complexity than the
previous criteria, because it requires the identification of all principal components (not
only selected ones), and then requires the estimation of correlation coefficients between
all standardized primary variables and all principal components. For n primary variables
and n principal components, it is also necessary to estimate n2 correlation coefficients.

• The greater complexity of memory manifests itself in the fact that before identifying the
final set of principal components, all principal components must first be identified.

The criteria in subsection 2.4 are not that complex. They allow you to make a decision regarding
the selection of principal components. After making a decision, it is enough to identify only
selected principal components. For this purpose, before performing the operation (48), it is
enough to discard as many last columns from the matrix RT as should be discarded of principal
components. On the other hand, the disadvantage of these criteria is that they do not always
allow the identification of as many principal components as to be able to present most of the
variance of each of the primary variables.

Due to the reduction in the number of major components, attention should be paid to the
consequences of this reduction. Since fundamental variables are described as vectors, reducing
the number of principal components is equivalent to reducing the size of the space in which the
vectors are described. Reducing the size of the space can simplify the analysis that is performed.

3.4 Factor analysis

Factor analysis was also performed for Dataset No. 1. Using the eigenvalues estimated for
the matrix of correlation coefficients (Table 5) and the eigenvectors (47) corresponding to these
eigenvalues, the full matrix of factor loadings (27) was found using the formulas (25) and (26).
This matrix is presented in Table 13. It can be seen that the content of this table is identical
to the content of Table 7. Table 7 contains the correlation coefficients between the primary
variables and the principal components obtained in the PCA. Table 13 contains the complete
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Table 13: Full matrix of factor loadings

F1 F2 F3 F4 F5 F6 F7

x1 -0.349 -0.257 0.595 0.555 -0.318 -0.220 0.008

x2 0.957 -0.114 0.029 0.081 -0.054 -0.139 -0.202

x3 0.882 -0.208 -0.193 -0.017 -0.190 -0.273 0.174

x4 0.101 0.737 -0.150 0.085 -0.620 0.181 -0.007

x5 0.008 0.820 0.058 0.189 0.375 -0.384 0.011

x6 0.663 0.144 0.394 0.335 0.276 0.438 0.063

x7 0.150 0.176 0.696 -0.670 -0.100 -0.058 0.012

Table 14: Cumulative matrix of common variances

F1 F2 F3 F4 F5 F6 F7

x1 0.1221 0.1881 0.5424 0.8506 0.9515 0.9999 1

x2 0.9165 0.9296 0.9304 0.9369 0.9399 0.9592 1

x3 0.7784 0.8218 0.8589 0.8592 0.8952 0.9697 1

x4 0.0103 0.5531 0.5758 0.5830 0.9674 1.0000 1

x5 0.0001 0.6728 0.6762 0.7118 0.8521 0.9999 1

x6 0.4400 0.4608 0.6157 0.7280 0.8041 0.9961 1

x7 0.0225 0.0533 0.5378 0.9865 0.9965 0.9999 1

matrix of factor loadings obtained in the FA. The identity of tables 7 and 13 means that each
factor loading that connects the i − th primary variable to the j − th factor is equal to the
correlation coefficient between the i− th primary variable and the j − th principal component.
It means that:

• The factors obtained in the factor analysis can be identified before their rotation with the
standardized principal components obtained in the principal components analysis.

• Factors connecting the i-th primary variable with successive principal components (i-th
row in Table 13) can be interpreted as components of the vector representing the primary
variables in the coordinate system made up of eigenvectors. Thanks to this, a geometric
description can be used to describe the behavior of primary variables, in particular, the
Pythagorean theorem can be used.

• Since in the vector interpretation each single row is a vector representing a single primary
variable, therefore, as in PCA, the cosines between successive vectors are identical to the
correlation coefficients between those primary variables that these vectors represent.
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3.4.1 Artifact

During the analysis of the full matrix of factor loadings L (27), a fact was observed, which will
be presented here in more detail2. For this purpose, attention should be paid to some properties
of this full matrix of factor loadings:

• The rows of the full matrix of factor loadings L can be interpreted as vectors that rep-
resent successive standardized primary variables. The sums of the squares of the com-
ponents of the row vectors, representing the squares of the lengths of these vectors, are
equal to the unit variances of the standardized primary variables.

• The columns of the L matrix can be interpreted as vectors that represent the principal
components in PCA. The sums of the squares of the components of the column vectors
representing the squares of the lengths of these vectors are equal to the eigenvalues of the
correlation coefficient matrix, and thus equal to the variances of the principal components
in the PCA.

By multiplying the factor loadings matrix L by the transposition of the eigenvector matrix UT ,
the following symmetric matrix was obtained:

L · UT =



0.987 −0.076 −0.122 −0.050 −0.057 0.004 −0.003
−0.076 0.803 0.508 0.005 −0.014 0.297 0.050
−0.122 0.508 0.843 0.018 −0.084 0.095 −0.011
−0.050 0.005 0.018 0.986 0.157 0.018 0.015
−0.057 −0.014 −0.084 0.157 0.979 0.080 0.019
0.004 0.297 0.095 0.018 0.080 0.945 0.055
−0.003 0.050 −0.011 0.015 0.019 0.055 0.997


. (49)

The UT matrix, similarly to the U (25) matrix, is an orthogonal matrix, and therefore describes
a certain rotation of the coordinate system in which the row vectors of the factor loadings matrix
are described. Rotation means changing the basis, or in other words changing the coordinate
system in which the vectors are described. So there is a new basis in which the factor loadings
matrix is symmetrical. This means that not only are the sums of the squares of the row vector
components equal to 1, but also the sums of the squares of the column vector components are
equal to 1. As a result of the performed rotation, the row vectors representing standardized
primary variables did not change. It only happened that the standardized primary variables are
represented by a different set of factors than before the rotation. After rotation, the primary
variables can be described as linear combinations of independent factors, but not factors iden-
tical to the standardized principal components. Now the factors are random variables with unit
variances.

With regard to the artifact described here, questions arise about both its causes and its
potential effects. As for the effects, it is still unknown whether they are important from the

2By the way, it should be mentioned that the article [1] describes an analogous fact that was observed
in the context of the analysis of the matrix containing the correlation coefficients between the primary
variables and the principal components.
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point of view of data analysis. As for the causes, the article [1] did not know them yet. In the
context of FA, it seems that more can now be said about the causes. An attempt to explain the
causes will be undertaken in section 5 where some detailed results presented in this paper will
be discussed.

3.4.2 Determining the number of factors

Section 2.4 presents the basic methods for determining the number of principal components in
PCA, as well as methods for determining the number of factors in factor analysis. In subsection
3.4.2, the criteria from subsection 2.4 were used to select the principal components, pointing
to differences in the results of their operation. In FA for the same data, the above criteria will
produce the same results as for PCA. This is due to the fact that the criteria discussed here
both in PCA and in FA refer to the eigenproblem solved for the same matrix of correlation
coefficients, i.e. to identical eigenvalues.

On the other hand, section 3.4.2 also suggests a new criterion for determining the number
of principal components. It was noted that this criterion has a much greater computational
complexity than each of the criteria from subsection 2.4. The proposed criterion first requires the
identification of all principal components, and then it requires the estimation of the correlation
coefficients between all principal components and all primary variables.

In the case of FA, it can be hoped that this new criterion will be characterized by a lower
computational complexity. Although Table 13 representing the full matrix of factor loadings
is identical to Table 7, which represents the matrix of correlation coefficients between primary
variables and principal components, in the case of FA, the method of its estimation does not re-
quire calculating the correlation coefficients, but only performing the operation (27), i.e. scaling
successive eigenvectors by roots of successive eigenvalues.

The squares of the factor loadings are a measure of the common variance between the stan-
dardized primary variable and the factor. As the factors are independent, the common variances
can be summed up in each row. For each row, Table 14 shows the cumulative common variances
from successive factors. These cumulative variances explain the level of representation of each
standardized primary variable by successive factors. It can be seen that in each row, the sum of
successive variances tends to one, that is, to the variance of the standardized primary variable.

Table 15 is a copy of Table 14. The difference is that in Table 15 the cell content is shown
as a percentage. The last row has also been added to Table 15, which contains the mean values
calculated for each successive column. The content of this row is identical to the content of the
last column in table 11, named ”Cumulative percentage of variance”. The analysis of the last
column in table 11 in the context of the last row of table 15 allows to evaluate the level of recon-
struction of the mean variance of all standardized primary variables by successive factors. Thus,
one factor explains 32.71% of the mean variance of all primary variables. When analyzing Ta-
ble 15, it can also be seen that the first factor explains 95.65% of the variance of the primary
variable x2, but the same factor only explains about 0.01% of the variance of the primary vari-
able x5. Two factors explain 52.56% of the mean variance of all primary variables. The same
two factors explain 92.96% of the variance of the primary variable x2 and only 5.33% of the
variance of the primary variable x7. In the same way, the influence of the sucessive factors on
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Table 15: Cumulative matrix of common variances as percentages, considering the
mean value for each column

F1 F2 F3 F4 F5 F6 F7

x1 12.21% 18.81% 54.24% 85.06% 95.15% 99.99% 100%

x2 91.65% 92.96% 93.04% 93.69% 93.99% 95.92% 100%

x3 77.84% 82.18% 85.89% 85.92% 89.52% 96.97% 100%

x4 1.03% 55.31% 57.58% 58.30% 96.74% 100.00% 100%

x5 0.01% 67.28% 67.62% 71.18% 85.21% 99.99% 100%

x6 44.00% 46.08% 61.57% 72.80% 80.41% 99.61% 100%

x7 2.25% 5.33% 53.78% 98.65% 99.65% 99.99% 100%

Average in column 32.71% 52.56% 67.67% 80.80% 91.52% 98.92% 100%

Table 16: Minimum variance (MinVar) and mean variance (AverVar) reproduced by
successive factors

No. of factors 1 2 3 4 5 6 7

EigVal 32.71% 19.85% 15.11% 13.13% 10.72% 7.40% 1.08%

MinVar 0.01% 5.33% 53.78% 58.30% 80.41% 95.92% 100%

AverVar 32.71% 52.56% 67.67% 80.80% 91.52% 98.92% 100%

NrMinVar 5 7 7 4 6 2 6

the reconstruction of the mean variance of all primary variables as well as on the reconstruction
of the variance of individual primary variables can be analyzed.

Figure 4: Minimum variance (MinVar) and mean variance (AverVar) reproduced by
successive factors

Based on the content of Table 15, Table 16 was created, in which for successive factors, the
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following lines present:

• EigVal – successive eigenvalues given as a percentage of the trace of the matrix of cor-
relation coefficients,

• MinVar – the level of reconstruction of the variance of the variable least represented by
successive factors,

• AverVar – the average level of variance of all primary variables explained by successive
factors,

• NrMinVar – number of the variable whose variance is least represented by successive
factors.

The content of Table 16 (excluding the last line) is shown in Figure 4. It can be seen that the
line labeled ”EigVal” is the scaled scree plot shown in Figure 2.

For any single primary variable, it is wise to represent most of its variance. Most of course
means more than half the variance. Assuming the minimum level of reproduction of individual
primary variables, it is possible to read from the chart or table how many factors will meet the
assumed level of reproduction of the variance of individual primary variables. In this case, the
3 factors will allow to reproduce 53.78% of the variance of the primary variable x7.

The presented analysis showed that, depending on the adopted criteria, the factor model
should contain three or four factors. Three factors result from the Kaiser criterion and the
criterion of half the number of primary variables. On the other hand, these three factors are
the minimum number of factors that can reproduce most of the variance of each of the primary
variables.

Finally, it can be seen that reducing the number of factors has some consequences. Since the
primary variables are interpreted as vectors, any reduction in the number of factors is equivalent
to a reduction in the size of the space in which the factor analysis is performed, which may
simplify the factor analysis.

3.4.3 Rotation of the model with three factors

Assuming that the primary variables can be modeled with three factors, Table 17 shows the fac-
tor loadings matrix for the three-factor model. Table 18 shows the common variances between
the primary variables and the three factors. The table shows that the primary variables x2 and
x3 are significantly similar to the first factor. On the other hand, most of the variances of the
primary variables x4 and x5 are represented by the second factor. Unfortunately, it is impossible
to indicate which factor carries most of the variances of the primary variables x1, x6 and x7.

After the Varimax rotation for the three-factor model (Table 19), only a slight improvement
was obtained. When analyzing the table of common variances after obtained after the Varimax
rotation (Table 20), it can be seen that the third factor represents the majority of the variance of
the x7 variable. Unfortunately, the variables x1 and x6 still do not have the dominant factor that
would represent most of their variance.
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Table 17: The matrix of factor loadings for a three-factor model

F1 F2 F3 Communality

x1 -0.3494 -0.2569 0.5952 54.24%

x2 0.9574 -0.1143 0.0286 93.04%

x3 0.8823 -0.2083 -0.1927 85.89%

x4 0.1015 0.7368 -0.1504 57.58%

x5 0.0082 0.8202 0.0583 67.62%

x6 0.6634 0.1442 0.3935 61.57%

x7 0.1499 0.1757 0.6960 53.78%

Table 18: The matrix of common variances for a three-factor model
F1 F2 F3 Communality

x1 12.21% 6.60% 35.43% 54.24%

x2 91.65% 1.31% 0.08% 93.04%

x3 77.84% 4.34% 3.71% 85.89%

x4 1.03% 54.28% 2.26% 57.58%

x5 0.01% 67.27% 0.34% 67.62%

x6 44.00% 2.08% 15.49% 61.57%

x7 2.25% 3.09% 48.45% 53.78%

3.4.4 Rotation of the factor model with the four factors

As in the model with three factors, even after the rotation, it was not possible to reach a situation
where most of the variance of each of the primary variables would be represented by one of the
factors. For this reason, an attempt was made to test the model with four factors. Table 21 shows
the factor loadings for the four-factor model. Table 22 shows common variances for primary
variables and factors. As in the model with three factors, it is still not possible to indicate which
factor carries most of the variance of the primary variables x1, x6 and x7.

After the Varimax rotation, new values of factor loadings were obtained for the four factors
(Table 23). When analyzing Table 24 containing the level of common variance between the
primary variables and the factors, a clear improvement was noticed. After rotation, the first
factor carries most of the variances of the primary variables x2, x3 and x6. The second factor
represents most of the variances of the primary variables x4 and x5. The third factor carries
most of the variance of the primary variable x7, and the fourth factor is representative of the
primary variable x1.

Row vectors from Table 21 (before rotation) and from Table 23 (after rotation) can also
be compared graphically. Although it is not possible to graphically represent vectors in a four-
dimensional space, it is possible to show them by projecting the vectors onto a two-dimensional
space. Figure 5 shows an example of projecting all row vectors from Table 21 (before rotation
- blue lines) and from Table 23 (after rotation - orange lines) onto the x3 × x4 plane, formed
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Table 19: The matrix of factor loadings for a three-factor model after Varimax rotation

F1 F2 F3 Communality

x1 -0.3314 -0.3410 0.5624 54.24%

x2 0.9634 -0.0250 0.0403 93.04%

x3 0.9009 -0.1056 -0.1901 85.89%

x4 0.0320 0.7536 -0.0831 57.58%

x5 -0.0719 0.8088 0.1300 67.62%

x6 0.6406 0.1708 0.4196 61.57%

x7 0.1223 0.1263 0.7120 53.78%

Table 20: The matrix of common variances for a three-factor model after Varimax
rotation

F1 F2 F3 Communality

x1 10.98% 11.63% 31.63% 54.24%

x2 92.82% 0.06% 0.16% 93.04%

x3 81.16% 1.12% 3.61% 85.89%

x4 0.10% 56.78% 0.69% 57.58%

x5 0.52% 65.41% 1.69% 67.62%

x6 41.04% 2.92% 17.61% 61.57%

x7 1.50% 1.60% 50.69% 53.78%

by the x3 and x4 axes. Before the rotation, the third and fourth coordinates in the first and last
row vector in Table 21 (two pairs of numbers [0.595, 0.555] and [0.696,−0.670] respectively)
had similar values in terms of the modul. It is manifested in the fact that in Fig. 5 the line
segments which represent the variable x1 and x7 are distant from the axis of the coordinate
system. It can be observed that after the rotation the line segments representing the variables
x1 and x7 became clearly close to the axis of the coordinate system. This means that there are
two different factors that represent most of the variances of the variables x1 and x7. The above
observation is consistent with the conclusions presented above after the analysis of Table 24.

4 Common algorithm for determining the number of principal compo-
nents in PCA and factors in FA

Subsection 2.4 discusses the problem of determining the appropriate number of principal com-
ponents due to the need to represent most of the variances of individual primary variables. It
was shown there that there is an algorithm for determining the appropriate number of princi-
pal components. However, it was found that the suggested algorithm would have too much
computational complexity, both in terms of time and memory. The unjustified increase in time
complexity would result from the necessity to calculate n2 correlation coefficients between n
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Figure 5: Rotation on the x3 × x4 plane for the four factor model

primary variables and n principal components. On the other hand, an unjustified increase in
memory complexity would result from the necessity to use all principal components for the cal-
culation of appropriate correlation coefficients, and not only those that are ultimately necessary
to represent most of the variances of the primary variables.

Similarly, subsection 3.4.2 deals with the problem of determining the appropriate number
of factors in factor analysis, due to the need to represent most of the variances of individual
primary variables by an appropriate factor model. The subsection 3.4.2 mentioned here also
suggests that there may be an appropriate algorithm for finding the appropriate number of fac-
tors. However, in this case, the proposed algorithm would not need significantly more time and
memory complexity.

In subsection 3.4, it was found that both principal component analysis and FA share a
common vector interpretation. As a result, a version of the algorithm for finding the appropriate
number of factors representing most of the variances of primary variables in FA can also be
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Table 21: The matrix of factor loadings for a four-factor model

F1 F2 F3 F4 Communality

x1 -0.349 -0.257 0.595 0.555 0.851

x2 0.957 -0.114 0.029 0.081 0.937

x3 0.882 -0.208 -0.193 -0.017 0.859

x4 0.101 0.737 -0.150 0.085 0.583

x5 0.008 0.820 0.058 0.189 0.712

x6 0.663 0.144 0.394 0.335 0.728

x7 0.150 0.176 0.696 -0.670 0.986

Table 22: The matrix of common variances for a four-factor model
F1 F2 F3 F4 Communality

x1 12.21% 6.60% 35.43% 30.82% 85.06%

x2 91.65% 1.31% 0.08% 0.65% 93.69%

x3 77.84% 4.34% 3.71% 0.03% 85.92%

x4 1.03% 54.28% 2.26% 0.73% 58.30%

x5 0.01% 67.27% 0.34% 3.57% 71.18%

x6 44.00% 2.08% 15.49% 11.23% 72.80%

x7 2.25% 3.09% 48.45% 44.86% 98.65%

used to find the appropriate number of principal components representing most of the variances
of primary variables in PCA. And since this version of the algorithm does not generate greater
computational complexity, its use in principal component analysis will also not require greater
computational complexity.

A common algorithm for determining the appropriate number of principal components in
PCA, as well as determining the appropriate number of factors in FA, is presented in Table
25. The algorithm refers to some common elements found in both PCA and FA. In particular,
it uses the diagonal matrix of eigenvalues Λ described by the formula (24) and the matrix of
eigenvectors U (25), which is obtained as a result of solving the eigenproblem for the matrix of
correlation coefficients. The algorithm also uses other variables, the interpretation of which is
as follows:

• NoF – a positive integer, obtained as a result of the algorithm’s operation, counts the
principal components or factors significant from the point of view of representing most
of the variances of individual primary variables.

• ε – a floating point number greater than 0.5, arbitrarily taken as a reference minimum
value of the variance of each of the primary variables, which should be represented by
principal components or factors. For the purposes of this work, the author assumed the
value ε = 0.51 (i.e. 51%) in the calculations.

• C[n] – n−element non-negative floating point vector that contains variances of individ-
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Table 23: The matrix of factor loadings for a four-factor model after Varimax rotation

F1 F2 F3 F4 Communality

x1 -0.129 -0.143 -0.030 0.902 85.06%

x2 0.956 -0.032 0.051 -0.136 93.69%

x3 0.853 -0.149 -0.065 -0.324 85.92%

x4 0.017 0.742 -0.031 -0.177 58.30%

x5 -0.040 0.840 0.052 0.047 71.18%

x6 0.733 0.258 0.151 0.319 72.80%

x7 0.038 0.012 0.992 -0.021 98.65%

Table 24: The matrix of common variances for a four-factor model after Varimax rota-
tion

F1 F2 F3 F4 Communality

x1 1.66% 2.03% 0.09% 81.28% 85.06%

x2 91.48% 0.10% 0.26% 1.86% 93.69%

x3 72.77% 2.22% 0.42% 10.51% 85.92%

x4 0.03% 55.03% 0.09% 3.15% 58.30%

x5 0.16% 70.53% 0.27% 0.22% 71.18%

x6 53.70% 6.67% 2.28% 10.16% 72.80%

x7 0.15% 0.01% 98.44% 0.04% 98.65%

ual primary variables represented by i principal components or i factors.

• MinV ar – value of the minimum element in the C array obtained in the i− th iteration
of the loop (12) - (15),

• nrV ar – number of the C array element containing the smallest variance in the i − th
iteration of the loop (12) - (15).

Due to the equivalence of the factor loadings matrix and the matrix of correlation coefficients
between primary variables and principal components, the presented algorithm is universal. It
can be used both in principal component analysis as well as in FA. The presented algorithm also
has much lower computational complexity than the algorithm suggested in subsection 3.4.2, as
it does not require multiple computation of correlation coefficients between primary variables
and principal components.

4.1 Modification of the principal components analysis algorithm

The criteria for determining the number of factors (or principal components) described in sub-
section 2.4 are blind to the variance values of single primary variables. It may happen that the
factors (or principal components) determined on the basis of these criteria do not represent most
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Table 25: Algorithm for determining the number of factors/components

The steps of the algorithm Comment

Input: Matrix Λn×n Eq. (24)
Matrix Un×n Eq. (25)
ε Threshold variance

Output: NoF No. of factors/components

Begin
(01) NoF := 0

(02) MinV ar := 0 Min. variance
(03) S :=

√
Λ Eq. (26)

(04) L := U · S Eq. (27)
(05) For i := 1 to n do Ci := 0 Common variances
(06) i := 0

(07) Do
(08) i := i+ 1

(09) For j := 1 to n do Cj := Cj + L2
ji

(10) nrV ar := 0

(11) MinV ar := 1

(12) For j := 1 to n do
(13) If (Cj < MinV ar) then
(14) nrV ar := j

(15) MinV ar := Cj

(16) While (MinV ar < ε)
(17) NoF := i

End

of the variance of some of the primary variables. On the other hand, the criterion presented in
section 4 avoids this deficit. The algorithm using the above criterion allows for a more reliable
way of determining the number of factors (principal components). An example of the use of
this algorithm in FA is presented in section 3.4.2. Here, the discussed algorithm will be used
to modify the PCA in order to enable the determination of the optimal number of principal
components. The modified version of the PCA algorithm is presented in Table 26.

4.2 Examples of determining the number of factors/components

In determining the appropriate number of principal components in PCA or factors in FA, differ-
ent criteria may lead to the recommendation of a different number of principal components or
factors, and thus may lead to inconsistent results. On the one hand, obtaining identical results
is not excluded. On the other hand, recommendations for the number of factors obtained by
different methods may be different. First of all, it may happen that some criteria may lead to a
recommendation that is unsatisfactory from the point of view of the representation of most of
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Table 26: Modification of the PCA algorithm, taking into account the new criterion for
determining the number of principal components

The steps of the algorithm Comment

Input: Xm×n Data matrix (20)
ε Threshold variance

Output: NoF No. of PC
Pm×NoF Matrix of PC

Begin
(01) For all the columns of matrix X find their averages Eq. (1)
(02) For the columns of matrix X ,

find the matrix of their random components x Eq. (2)
(03) For all columns of X find their standard deviations Eq. (6)
(04) Standardize the columns of matrix x Eq. (7)
(05) For matrix x, find the matrix of correlation coefficients R Eq. (10)
(06) Solve the eigenproblem for the matrix R:

– Find the matrix Λ Eq. (24)
– Find the matrix U Eq. (25)

(07) Find the matrix S. Eq. (26)
(08) Find the matrix of factor loadings L. Eq. (27)
(09) For given ε and matrix L,

find NoF which is the final number of PC Table (25
(10) k := NoF

(11) Reduce matrix U to the first k columns: Un×n → Un×k

(12) Find the matrix of principal components Pm×k:
Pm×k := xm×n · Un×k Eq. (15) or Eq. (48)

End

the variances of the primary variables. Four examples will be shown in this subsection which
will confirm the necessity to apply the criterion presented in section 4.

4.2.1 Dataset No. 2

A dataset known as ”Houses Data” was used to test the effectiveness of the algorithms for deter-
mining the number of factors or principal components. This dataset is used in the book [5] and
also in the article [15]. A link to the location of the dataset [16] is given in [5]. The dataset con-
tains nine variables that have been measured 41280 times. The first variable was adopted as the
dependent variable. This variable was modeled using the remaining eight variables. Principal
component analysis for these eight variables was performed in [5]. However, since all variables
are correlated, in this article the analysis was performed for all nine variables. The matrix of
correlation coefficients and the matrix of determination coefficients for the discussed data set
are presented in [17]. Table 27 shows the variance distribution explained by the following fac-
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Table 27: The percentage of variances explained by the successive factors for Dataset
No. 2

No. Eigenvalue
Cumulative Percentage of variance Cumulative
eigenvalues explained by each PC percentage of variance

1 3.912 3.912 43.5% 43.5%

2 1.923 5.835 21.4% 64.8%

3 1.697 7.532 18.9% 83.7%

4 0.910 8.442 10.1% 93.8%

5 0.293 8.736 3.3% 97.1%

6 0.143 8.878 1.6% 98.6%

7 0.063 8.941 0.7% 99.3%

8 0.045 8.985 0.5% 99.8%

9 0.015 9.000 0.2% 100%

Table 28: Minimum variance (MinVar) and mean variance (AverVar) reproduced by
successive factors (Dataset No. 2)

No. of factors 1 2 3 4 5 6 7 8 9

EigVal 43.5% 21.4% 18.9% 10.1% 3.3% 1.6% 0.7% 0.5% 0.2%

MinVar 0.8% 7.3% 18.8% 87.4% 90.4% 96.9% 98.3% 99.3% 100%

AverVar 43.5% 64.8% 83.7% 93.8% 97.1% 98.7% 99.3% 99.8% 100%

NrMinVar 1 2 3 1 6 4 8 5 2

Figure 6: Scree plot for Dataset No. 2

tors. When analyzing the table, it can be noticed that the choice of three factors will explain
slightly over 83% of the variance of the primary variables. The Kaiser criterion also suggests
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Figure 7: Minimum variance (MinVar) and mean variance (AverVar) reproduced by
successive factors (Dataset No. 2)

the choice of three factors. On the other hand, in the scree plot (Fig. 6), the four eigenvalues are
above the ”elbow” on the slope of the scree. The analysis of Table 27 and Figure 7 shows that
the choice of three factors will explain only 18.75% of the variance of the variable x3. There-
fore, four factors must be selected that explain more than 87% of the variance of each primary
variable.

Figure 8: Scree plot for Dataset No. 3

4.2.2 Dataset No. 3

As another example, the dataset used in [18] and shared in [19] will be shown. The dataset con-
tains 123 correlated random variables, each of which has been measured 14504 times. Table 29
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Table 29: The percentage of variances explained by the successive factors for Dataset
No. 3

No. Eigenvalue
Cumulative Percentage of variance Cumulative
eigenvalues explained by each PC percentage of variance

1 58.3 58.3 47.4% 47.4%

2 19.5 77.8 15.9% 63.2%

3 17.9 95.7 14.6% 77.8%

4 8.5 104.2 6.9% 84.7%

5 7.3 111.5 6.0% 90.7%

6 4.2 115.7 3.4% 94.1%

7 2.2 117.9 1.8% 95.9%

8 0.8 118.7 0.6% 96.5%

9 0.5 119.2 0.4% 96.9%

· · · · · · · · · · · · · · ·

Table 30: Minimum variance (MinVar) and mean variance (AverVar) reproduced by
successive factors (Dataset No. 3)

No. of factors 1 2 3 4 5 6 7 8 · · ·
EigVal 47.4% 15.9% 14.6% 6.9% 6.0% 3.4% 1.8% 0.6% · · ·
MinVar 3.9% 4.0% 12.5% 13.3% 14.3% 33.2% 52.0% 60.1% · · ·
AverVar 47.4% 63.2% 77.8% 84.7% 90.7% 94.1% 95.9% 96.5% · · ·

NrMinVar 81 81 8 8 8 11 4 11 · · ·

Figure 9: Minimum variance (MinVar) and mean variance (AverVar) reproduced by
successive factors (Dataset No. 3)
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Table 31: The percentage of variances explained by the successive factors for Dataset
No. 4

No. Eigenvalue
Cumulative Percentage of variance Cumulative
eigenvalues explained by each PC percentage of variance

1 1.812 1.812 25.9% 25.9%

2 1.697 3.508 24.2% 50.1%

3 1.481 4.990 21.2% 71.3%

4 1.000 5.990 14.3% 85.6%

5 0.813 6.803 11.6% 97.2%

6 0.189 6.992 2.7% 99.9%

7 0.008 7.000 0.1% 100%

Table 32: Minimum variance (MinVar) and mean variance (AverVar) reproduced by
successive factors (Dataset No. 4)

No. of factors 1 2 3 4 5 6 7

EigVal 25.88% 24.24% 21.16% 14.29% 11.62% 2.70% 0.11%

MinVar 0.00% 0.06% 0.06% 44.43% 90.54% 99.73% 100%

AverVar 25.88% 50.12% 71.28% 85.57% 97.19% 99.89% 100%

NrMinVar 3 1 1 2 7 3 1

contains the first nine lines describing the distribution of variances explained by the successive
factors. The last column of the table shows that the choice of four factors will explain more than
84% of the variance of the primary variables. The Kaiser criterion suggests the use of seven fac-
tors. On the other hand, in Figure 8, there are three so-called ”Elbows”. This fact does not make
analysis easier. The final results are not unequivocal. On the other hand, analysis of Table 30
and Figure 9 shows that selecting the seven factors will represent most of the variance of each
of the primary variables (see MinVar). This clearly suggests that seven factors (components)
should be selected for both factor analysis and principal component analysis.

4.2.3 Dataset No. 4

Another data set was prepared at the Ship Hydromechanics Laboratory at the Maritime and
Transport Technology Department of the Delft University of Technology. Its content was made
available by the UCI Machine Learning Repository [20]. The analyzed dataset contains seven
random variables measured 308 times.

In the case of determining the appropriate number of factors for the analyzed data set, it
should be stated that the criterion of the scree plot is not adequate here, because the graph does
not indicate two phases before ”elbow” and after ”elbow”. There is no ”elbow” in Figure 12.
On the other hand, the criterion of half the number of primary variables suggests the selection
of three factors, and the Kaiser criterion – four. The last classic criterion, i.e. the criterion of
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Figure 10: Scree plot for Dataset No. 4

Figure 11: Minimum variance (MinVar) and mean variance (AverVar) reproduced by
successive factors (Dataset No. 4)

explained variance (Table 33), suggests three factors (71.3% of variance) or four factors (85.6%
of variance) depending on the accepted minimum threshold of explained variance. As shown
above, this criterion only informs about the average level of reproduction of the variance of
all primary variables.Using this criterion, it is possible that the variance of individual primary
variables may not be sufficiently reproduced.

And it really is. The analysis of Table 34 and Figure 13 shows that for three factors, at least
the variance of the first primary variable x will be insufficiently reproduced. For three factors
the level of reproduction of variance x1 will be less than 1%. From the point of view of the
possibility of reproducing most of the variances of single primary variables, also four factors
are not enough. With four factors, the variance x2 will be reproduced in 44.4%. Only five
factors will reproduce most of the variance of all single primary variables.
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Table 33: The percentage of variances explained by the successive factors for Dataset
No. 5

No. Eigenvalue
Cumulative Percentage of variance Cumulative
eigenvalues explained by each PC percentage of variance

1 5.787 5.787 64.3% 64.3%

2 1.135 6.922 12.6% 76.9%

3 0.833 7.756 9.3% 86.2%

4 0.575 8.330 6.4% 92.6%

5 0.325 8.655 3.6% 96.2%

6 0.145 8.800 1.6% 97.8%

7 0.129 8.929 1.4% 99.2%

8 0.043 8.972 0.5% 99.7%

9 0.029 9.000 0.3% 100%

Table 34: Minimum variance (MinVar) and mean variance (AverVar) reproduced by
successive factors (Dataset No. 5)

No. of factors 1 2 3 4 5 6 7 8 9

EigVal 64.3% 12.6% 9.3% 6.4% 3.6% 1.6% 1.4% 0.5% 0.3%

MinVar 16.6% 64.8% 75.2% 81.0% 92.7% 92.7% 97.8% 98.3% 100%

AverVar 64.3% 76.9% 86.2% 92.6% 96.2% 97.8% 99.2% 99.7% 100%

NrMinVar 6 7 7 3 4 4 2 8 7

Figure 12: Scree plot for Dataset No. 5

4.2.4 Dataset No. 5

The dataset contains the value of the Istanbul Stock Exchange Index along with seven other
stock indices. The data was collected between June 5, 2009 and February 22, 2011. The source
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Figure 13: Minimum variance (MinVar) and mean variance (AverVar) reproduced by
successive factors (Dataset No. 5)

of the data can be found on the UCI Machine Learning Repository website [21]. The data table
has 536 rows and 10 columns. After the date is rejected, 9 columns remain for analysis.

As in the previous examples, the determination of the appropriate number of factors was
made in the context of the four classical criteria and the criterion developed in this article:

• Figure 12 shows a scree plot. As there is one point in front of the so-called ”elbow” on
the slope of the scree, the criterion of the scree plot suggests the selection of one factor.

• The Kaiser criterion suggests two factors because two eigenvalues are greater than one.

• Four factors suggest the criterion of half the number of primary variables.

• Assuming that the average level of the explained variance should be at least 80%, on the
basis of Table 33 it can be said that the criterion of the explained variance suggests the
selection of three factors.

Each of the criteria suggests a different solution to the problem of determining the number of
factors.

There is still the last criterion, discussed in this article. From Table 34 and Figure 13, it can
be seen that one factor would explain less than 17% of the variance of the primary variable x6.
Two factors explain the variance of the primary variable x7 at almost 65%. Therefore, from the
point of view of the necessity to reproduce most of the variance of each of the primary variables,
two factors are sufficient.

5 Discussion

The article attempts to compare the exploratory factor analysis based on principal components
with the principal components analysis using the correlation coefficient matrix. Both types of
analyzes have a common mathematical core. Among the elements common to both types of
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analyzes, there are also non-obvious elements. Here an attempt will be made to discuss them.
Particular attention will be paid to a common algorithm for determining the number of factors
in FA and principal components in PCA.

5.1 Differences between the PCA and the FA

The differences between principal component analysis and factor analysis are shown in Table
35. In the columns of the table, it is possible to analyze the detailed differences between both
types of analyzes. It can be noticed that these differences refer to different aspects of both types
of analyzes, such as their essence, goals, similarity of algorithms, obtained results, ambiguity
of solutions, interpretation of factors, as well as benefits.

5.2 Similarities between the PCA and the FA

There are also significant similarities between the PCA and the FA. These similarities result
from the common mathematical core of both types of analysis. This common core is eigenprob-
lem solving for the matrix of correlation coefficients. Detailed similarities resulting from this
core refer to several important aspects, such as the previously discussed geometric interpreta-
tion, equivalence of factors before rotation with principal components, methods of determining
the number of principal components and factors, or the observed artifact, as well as clustering
of primary variables due to their similarity to both principal components and factors.

In subsections 2.1 and 3.2 it was stated that both types of analysis (PCA and FA) use com-
mon or analogous algorithms. It was found that the common algorithm is eigenproblem solving
for the correlation coefficient matrix, and the analogous algorithm is the determination of the
number of principal components and factors. After further analysis carried out in this article,
and in particular after finding that the matrix of factor loadings before rotation is the same as
the matrix of correlation coefficients between primary variables and principal components, it
can be concluded that the algorithms included in the PCA and FA, which in subsection 2.1 were
considered analogous, now they can obtain the status of common algorithms, both for the PCA
and for the FA. In particular, the algorithm that obtained the status of a common algorithm for
both types of analyzes is the algorithm for determining the number of principal components and
the number of factors. All of these algorithms, or more broadly the elements that are common
to both PCA and FA, will be discussed in detail later in this section.

5.2.1 Geometric interpretation of factor analysis

The exploratory factor analysis based on principal components was compared with the principal
components analysis using the matrix of correlation coefficients. The article [1] proposes a
geometric interpretation of the principal components analysis in the vector space. It was found
that standardized primary variables can be presented as vectors whose components are equal to
the correlation coefficients between primary variables and principal components.

An analogous interpretation was proposed for the factor analysis. In this case, the primary
variables are also presented as vectors whose components are equal to the factor loadings. It
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Table 35: Comparison for significant differences between PCA and FA

Principal component analysis Factor analysis

Essence The observed correlated random variables are re-
placed by a set of independent random variables. In
essence, this operation is based on the orthogonal
rotation of the Cartesian coordinate system. The
measured points are projected onto the axes of the
new (different from the original) coordinate system
and then read in this new coordinate system.

Based on the observations, linear models
of the observed correlated primary vari-
ables are built with respect to the set of
independent standard factors.

Aim PCA only aims to recreate the sample used EFA aims to model the target population
Algorithm

• Successive eigenvectors become successive
columns of the matrix.

• The transposition of the eigenvector matrix is
an orthogonal rotation matrix.

• The product of the matrix containing the stan-
dardized primary random variables by the trans-
posed rotation matrix gives the matrix of prin-
cipal components.

• Successive eigenvectors become suc-
cessive columns of the matrix.

• The product of the matrix of eigen-
vectors by the diagonal matrix of the
roots of the eigenvalues gives the fac-
tor model.

Result Principal components are representatives of pri-
mary variables:
Single principal component = linear combination
of the observed variables

Factor analysis provides models for pri-
mary variables:
Single observed variable = linear combi-
nation of factors (components) + error

Interpretation Principal components have no interpretation Factors are subject to interpretation.
Ambiguity The obtained solution is unambiguous. There are many different solutions.

Benefits
• From the set of principal members, you can re-

move those components that have the smallest
variance. In this case, most of the information
contained in the set of primary variables will be
represented by a smaller set of principal com-
ponents. In addition, such a reduction can also
be viewed as a lossy compression of the input
data.

• A reduced set of principal components enables
more effective data clustering. Clustering in a
reduced space is less computationally intensive.

• In the case of reducing the principal compo-
nents to two, there is a possibility of effective
data visualization, as well as the assessment of
the possibility of their clustering.

• In the least squares method, the use of principal
components instead of primary variables pre-
vents errors resulting from the ill-conditioning
of the matrix of a system of normal equations

Factor analysis models n random vari-
ables against fewer hidden factors. This
gives the following possibilities:
• Hidden factors can be interpreted

(identified). Their correct interpreta-
tion makes it possible to explain the
random phenomenon represented by
the primary variables, and thus to ex-
plain the common causes that influ-
ence the observed phenomenon.

• Primary variables can be clustered
due to their similarity to factors.

• If the factor model is known, and
the primary variables are not avail-
able, the factor model will enable the
Monte Carlo simulation of the pri-
mary variables, and then the estima-
tion of their statistical characteristics.
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was found that the values of the factor loadings connecting the primary variables with the inde-
pendent factors are equal to the above-mentioned correlation coefficients between the primary
variables and the principal components obtained in the PCA. Consequently, the matrix of corre-
lation coefficients between primary variables and principal components obtained in the principal
components analysis is identical to the matrix of factor loadings obtained in the factor analysis.
This means that the two vector interpretations of the primary variables are not only analogous,
but identical.

The consequence of this vector representation is the possibility of using the Pythagorean
theorem to describe the behavior of primary variables. On the other hand, the cosines between
the individual vectors representing the primary variables are the same as the correlation coeffi-
cients between the corresponding fundamental variables.

5.2.2 Factors before rotation versus standardized principal components

The article examines the factor analysis using principal components. In this analysis, the factors
before their reduction can be identified with standardized principal components obtained in
principal components analysis. More precisely, the factors become variables identical to the
first few standardized principal components with the largest variances. This is because:

1. The factor loadings that relate the modeled primary variables to the factors are directly
computed with the eigenvalues and eigenvectors estimated for the correlation coefficient
matrix. The eigenvalues are equal to the variances of the successive principal components
[1]. Eigenvectors are used in the transformation (27). This transformation leads to the
estimation of the factor loadings.

2. The factor loadings are the same as the correlation coefficients between the primary
variables and the principal components in the PCA (see subsection 3.3.1). Both the factor
squares and the corresponding squares of the correlation coefficients measure the level
of common variance between the primary variables and the factors in FA and principal
components in PCA.

Hence, it is justified to state that the factor analysis before any rotation of factors, models the
standardized primary variables using standardized principal components.

5.2.3 The problem of determining the number of factors/components

The criteria for determining the number of principal components and factors described in sub-
section 2.4 were subjected to a detailed critical analysis. Examples of their weaknesses are
provided in subsection 4.2:

• The scree plot criterion – the examples presented in subsection 4.2 show that in some
situations the scree plot is ambiguous:

– The scree diagram does not show two phases separated by the so-called ”elbow”
(Figures 2 and 10),

– More than one ”elbow” can be seen in the scree plot (Figures 6 and 8).
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• Percentage criterion of explained variance - the weakness of this criterion is that it re-
lates to the average variance of the primary variables represented by the selected factors.
Depending on the distribution of the obtained eigenvalues, the explained mean variance
of the primary variables may be relatively large, and the reconstructed variance of indi-
vidual primary variables may be negligible (Table 32, Fig. 11).

• Eigenvalue criterion called the Kaiser criterion - the fact that a given factor with an eigen-
value greater than one should have a variance greater than the variance of a single primary
variable does not mean that a factor with a variance of less than one will never represent
most of the variance of some primary variable. On the other hand, if a factor with an
eigenvalue less than one would represent most of the variance of some primary variable,
then that factor should not be rejected. It should also be added that this criterion does
not consider rotation, which can radically change the situation by assigning significant
factor loadings to the non-rejected factor.

• The criterion of half the number of primary variables - in practice, there may be situations
in which the mutual correlations between the variables are low. Then the number of
factors necessary to reproduce the variance of primary variables may be greater than half
the number of primary variables (see subsection 4.2.3).

The results of the analysis carried out lead to the conclusion that all the criteria discussed
above have deficits, and their application does not always lead to the correct determination
of the number of factors/components. Due to these deficits in determining the number of fac-
tors/components, inconsistencies can arise. However, since these criteria are blind to the vari-
ances of single primary variables, their greatest deficit is the inability to reproduce most of the
variances of single primary variables. Both the selected principal components in the principal
components analysis and the selected factors in the factor analysis may not sufficiently repro-
duce the variance of some individual primary variables. In response to the above deficits, a new
criterion for determining the number of factors in factor analysis was analyzed. This criterion
makes it possible to present most of the variances of each of the analyzed primary variables.
To enable the application of this criterion, an efficient algorithm for determining the number of
factors has been proposed.

The answer to the deficits presented above is the criterion which is also discussed in this
article. With regard to this criterion, an algorithm is proposed in section 4 that allows the
number of factors to be determined in the factor analysis in such a way that the factor model
can represent most of the variance of each of the primary variables. On the other hand, it should
be emphasized that:

• The matrix of factor loadings is identical to the matrix of correlation coefficients between
the original variables and the principal components obtained in the principal components
analysis.

• The algorithm for estimating factor loadings has a lower time and memory complexity
than the algorithm for estimating correlation coefficients between primary and principal
variables.
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Therefore, the algorithm for determining the number of factors in factor analysis can also be
used to determine the number of principal components in principal component analysis. As
a result, the number of factors/components can be effectively determined so that most of the
variance of each of the primary variables can be represented, not just their mean variance:

• In factor analysis, the algorithm selects a sufficient number of factors so that the factor
model reproduces most of the variance for each of the primary variables.

• In principal components analysis, the algorithm selects enough principal components to
represent most of the variance of each of the primary variables3.

5.2.4 A necessary condition to determine the optimal number of factors/compo-
nents

Due to the need to represent most of the variances of individual primary variables, the cri-
terion presented here can be considered a necessary condition for the correct solution of the
problem of determining the number of factors/components. It also seems that this criterion can
be considered a sufficient condition for a reasonable determination of the number of principal
components in principal component analysis.

Unfortunately, this cannot be a sufficient condition for factor analysis. The section 3.4
describes a case in which it was shown that while only three factors are sufficient to represent
most of the variances of all primary variables, only four factors (after Varimax rotation) have
made it possible to associate most of the variances of individual primary variables with single
factors. It means that only for four factors it was possible to clustered primary variables due to
their similarity to the factors.

5.2.5 Artifact

Subsection 3.4.1 describes the observed phenomenon (similarly to[1]) in which the product of
the matrix L by the matrix UT results in a symmetric matrix:

L · UT =
(
L · UT

)T
. (50)

The article [1] asks questions about the cause of the observed phenomenon, as well as its po-
tential application. Although there is still no answer to the second question, there is an answer
to the first question in the area of factor analysis. Since the matrix of factor loadings in FA
is identical to the matrix of correlation coefficients between primary variables and principal
components in PCA, this answer is also valid in PCA.

3Principal components analysis can be viewed as lossy compression, where several principal compo-
nents carry most of the information contained in the primary variables. Common sense says that lossy
compression assumes that most of the information for all primary variables can be reconstructed from a
compressed dataset. An unsatisfactory reconstruction of any primary variable would not achieve this lossy
compression goal.
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Formula (27) presents L as the product of the matrix U and the diagonal matrix S. The
diagonal matrix S can be expressed as the square of two diagonal matrices D =

√
S

S = D ·D. (51)

Hence:
L · UT = U ·D ·D · UT . (52)

Using the association law for the matrix product, the right side of the above expression can be
grouped. Then the expression (52) takes the form:

L · UT = (U ·D) ·
(
D · UT

)
. (53)

Since the transposition of a diagonal matrix is the same matrix, therefore the expression (53)
can be expressed as follows:

L · UT = (U ·D) · (U ·D)
T
. (54)

The right side of the expression (54) shows the product of the matrix by its transposition, so the
product L · UT is symmetrical.

5.2.6 Clustering of random variables

The article [17] presents a wide spectrum of problems related to clustering of primary variables.
For this purpose, various methods of defining dissimilarity of random variables (Euclidean met-
ric, cosine measure) were used, as well as various clustering algorithms (k-means algorithm,
spectral algorithms). In particular, the correlated primary random variables have been clustered
due to the degree of their similarity to the principal components as well as their similarity to
one another.

One of the goals of factor analysis is to find the similarity of the primary variables to the
identified interpretable factors. This similarity finding is equivalent to clustering a set of primary
variables. The rotation of the identified factors can help in this.

On the other hand, since the matrix of correlation coefficients between primary variables
and principal components is identical to the matrix of factor loadings, clustering of primary
variables due to their similarity to principal components (described in [17]) is the same as
clustering, which uses matrix of factor loadings before their rotation.

In the above context, several facts should be noted:

• The algorithm for estimating the factor loadings has a much lower computational com-
plexity (both time and memory) than the algorithm for estimating the matrix of correla-
tion coefficients between primary variables and principal components.

• The factor loadings matrix enables the representation of primary variables in vector form
as points in the space of the Cartesian coordinate system. Clustering of primary variables,
due to their similarity to factors/components, refer to the vector representation.

• The efficiency of the clustering algorithms used in [17] does not depend on the rotation
of the coordinate system.
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One of the intentions of factor analysis is to clustered primary variables due to their similarity
to independent factors. Due to the facts presented above, it is reasonable to conclude that,
regardless of the type of analysis (FA or PCA), clustering of primary variables due to their
similarity to factors/components should be performed only with the use of the factor loadings
matrix. On the other hand, with regard to clustering of primary variables, due to their similarity
to factors, it seems correct to conclude that clustering of primary variables should not depend
on factor rotation.

Before rotation, the factors are equivalent to the standardized principal component. Rota-
tion finds factors other than standardized principal components. It can be assumed that in the
case of a simple analysis of the factor loadings matrix (without the use of a computer), rotation
will only facilitate clustering. It is assumed that these new factors will allow for easier grouping
of primary variables. This hypothesis should possibly be tested in further research.

6 Conclusions

The article discusses selected problems related to both principal component analysis (PCA) and
factor analysis (FA). In particular, both types of analysis were compared. The comparison was
limited to principal components analysis, which uses a matrix of correlation coefficients instead
of a covariance matrix. Factor analysis was limited to exploratory factor analysis, which uses
principal components.

Comparing principal component analysis and factor analysis not only confirms the exis-
tence of many common elements in both types of analysis, but above all reveals three important
facts:

• The matrix of factor loadings is identical to the matrix of correlation coefficients between
primary variables and principal components obtained in principal components analysis.

• The algorithm for estimating the factor loadings has a lower time and memory com-
plexity than the algorithm for estimating the correlation coefficients between primary
variables and principal components.

• There is a vector interpretation of primary variables. In this interpretation, the respec-
tive factor loadings are the components of the vector that represents the given primary
variable.

Therefore, all operations performed on factors/components (determining the number of fac-
tors/components) and on primary variables (clustering) can be performed on the factor loadings
matrix, and the vector interpretation of primary variables leads to useful conclusions and gives
real possibilities of its use:

• The Pythagorean theorem can be used to describe the behavior of primary variables.

• The cosines between the vectors representing the primary variables are identical to the
correlation coefficients between the corresponding primary variables.

• Based on the vector representation of the primary variables, the number of factors/com-
ponents can be determined so that they can represent most of the variances of all the
primary variables. For this purpose, an appropriate algorithm has been proposed.
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• The condition for the number of factors/components, which enables the representation of
most of the variance of each of the primary variables, is a necessary and sufficient condi-
tion to determine the optimal number of principal components in principal components
analysis and a necessary condition to determine the optimal number of factors in factor
analysis.

• Reducing the number of factors/components is the same as reducing the size of the space
in which the primary variables are represented.

• Based on the Pythagorean theorem, it is possible to analyze the standard deviations and
variance of individual original variables by analyzing the lengths and squares of the
lengths of the respective vector components.

• Clustering of primary variables due to their mutual similarity, and also due to the simi-
larity to factors in factor analysis, and also due to the similarity to principal components
in principal component analysis, can be performed by clustering vectors (points) due to
their mutual similarity and because of the similarity to the factors/components.

In addition to the practical aspects considered in the article, it is also worth noting an aspect
that probably has no practical significance, but is somewhat surprising. This is true for the
artifact that has been observed for the vector representation of the primary variables in both
PCA and FA. By multiplying the matrix of row vectors representing the primary variables by
the transposition of the matrix of eigenvectors UT , a symmetric matrix was obtained. In this
context, questions arose about the cause of the phenomenon and about the possibility of its use.
There is no answer to the second question. The article found an algebraic answer to the first
question.
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