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Abstract 

In this paper we show the new method of solving the lubrication problem for visco-elastic oils occurring in 
cylindrical micro-bearing gap. In this method are taking into account all viscoelastic terms without simplifications. In 
the method presented in this paper for lubricants with non-Newtonian visco-elastic properties are questioning the 
hitherto prevailing assumptions using in hydrodynamic theory of lubrication such as for example constant value of the 
hydrodynamic pressure in gap height direction. The objective of the research under the paper topic is an analytical, 
unified formulation and a new view of general a non-classical solution of hydrodynamic problem of microbearing 
lubrication using algorithm to determine oil viscoelastic properties of the lubricant and the 3D hydrodynamic 
pressure distribution taking into account pressure changes in gap height direction.Up to now the complete influences 
of non-Newtonian visco-elastic oil features on the 3D hydrodynamic pressure distribution in cylindrical micro-
bearing gap were not considered in analytical way. 

We assume viscous and complete visco-elastic non-Newtonian lubricant directly near the cooperating 
surfaces. Viscoelastic oil properties are described by means of total form of Rivlin-Ericksen constitutive 
relations without simplifications.During the solution process the oil velocity components and hydro dynamic 
pressure are derived. The equation of motion are considered in cylindrical coordinates. Present paper 
elaborates the analytical method of oil velocity, pressure and friction forces determination for cylindrical slide 
micro-bearing. In this paper are derived the analytical formulae for velocity components, pressure distributions, 
in cylindrical micro-bearings. 
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1. Introduction 
 

In this paper are assumed a hypothetical assumption that investigations of the 
hydrodynamic lubrication of slide micro-bearings starting from the foundations of the problem 
shall result in questioning in some areas of solutions the basic simplifications that have been in 
use so far, e.g. the constant hydrodynamic pressure in gap height direction. The theory of 
hydrodynamic lubrication that has been valid so far is based on the abovementioned 
simplification assumptions and it leads to classical form of Reynolds equations that are more 
or less modified and that determine the distributions of the values of the hydrodynamic 
pressure in two dimensional form [1, 3]. The research practice that has been accepted so far by 
many authors for the formulation of various problems in the area of hydrodynamics comes 
down to modifications of the Reynolds equation that was defined 100 years ago without any 
thorough derivations. Present paper shows that Reynolds equation is the result of an imposing 
concrete boundary conditions that are different in almost each problem on the components of 
the distribution of the velocities of the lubricating liquid in the bearing gap.Thus 
abovementioned Reynolds equation can not be the same for each case. The measurements 
performed by AFM in micro- bearing gap demonstrate that particularly in ultra thin 
microbearing gap i.e. in thin lubricant layer the hydrodynamic pressure varies considerably in 
gap height direction. In this paper are derived abovementioned changes [5]. 
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2. Formulation of the problem 
 

HDD micro-bearing geometry described in cylindrical coordinates (r, ,z) is presented in Fig. 1. 
 

 
Fig. 1. The geometry of HDD microbearing: a) View of HDD, b) micobearing construction, c) classical pressure 

distribution in cross section, d) classical pressure distribution in length direction 
 

In this micro-bearing lubrication problem for the visco-elastic properties of the oil the 
presented solutions are described by means of Rivlin-Ericksen constitutive relations with the two 
pseudo-viscosity constant coefficients  and  in Pas2 [2,4]. Here is considered the unsteady liquid 
flow with full viscoelastic properties for enough large Deborah numbers inside thin boundary 
layer. Viscous fluid forces are much greater than density forces. Liquid inertia forces are 
neglected. After boundary layer simplifications, i.e. when the terms of the order = /R  0.001 for 
radial clearance  and radius of the micro-bearing journal R are neglected, then for the oil flow in 
the thin layer the equations of motion and the continuity equation have the following dimensional 
form: 
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where 0<r< , 0< b z<+b and t denotes time. Symbol 2b describes bearing length.  
System of equations (1)-(4) determines unknown oil velocity components v , vr, vz, in ( , r, z) 

i.e. circumferential, radial, longitudinal directions and unknown hydrodynamic pressure function 
p. Equation (2) indicates that hydrodynamic pressure p changes in gap height direction. 
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Micro-bearing sleeve is motionless in circumferential  and longitudinal z direction. Hence on 
the sleeve surface for r=  all oil velocity components are equal to zero. Oil flow in micro-bearing 
gap is generated by the rotation of the journal with angular velocity  and rotational speed 20 000 
rpm. Thus on the journal surface for r=0 the velocity component in circumferential  direction 
attains value R . On the ground of abovementioned remarks, we assume the following boundary 
conditions for the oil velocity components [5]: 

 v ( ,r=0,z)= R, v ( ,r= ,z)=0, vr( ,r= ,z)=0, vr( ,r=0,z)=0, vz( ,r=0,z)=0, vz( ,r= ,z)=0.   (6) 

On the hydrodynamic pressure function we impose the following boundary conditions:  

 p=pA 0 for = p=0 and p=pA 0 for = k, pA atmosferic pressure, (7a) 

where origin angle p we know and unknown end coordinate k we determine from the condition: 
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 (7b) 

The changes of viscoelastic oil properties in gap height direction are small hence terms 
describing mentioned features are described by the following averaged form in gap height 
direction [5]: 
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where 0<r<  , 0< b z<+b. 
 
3. Initial basic solutions 
 

Neglecting the visco-elastic terms for =0 and =0 in equations (1)-(4) we obtain by virtue of 
Eq.(2) the classical constant value of hydrodynamic pressure in gap height direction. In this case 
the initial basic solutions of the system of partial differentia equations (1)-(4) under the boundary 
conditions (6), (7ab) lead to the following classical particular solutions: 
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where 0<r< , 0< b z<+b. 
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3. First step of approximation  
 

Now we are going to the first step approximation. At first we determine the pressure changes in 
gap height direction. Therefore we use the averaged terms describing visco-elastic oil properties in 
equation (2). Into abovementioned terms we put initial basic solutions (12) and (13), thus after 
integration respect to the variable r, we have following expression for the pressure approximation: 
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After terms reduction formula (16) leads finally to the form: 
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Integration of equation (17) with respect to the variable r gives the first pressure approximation 
in following general form: 
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where C1 denotes integration constant. It is easy to see, that the total pressure in first 
approximation t,z,,rp )1(  varies in gap height direction r and on the journal surface in place r=0 

equals unknown function t,z,p )1( . On the ground of above mentioned assumption we obtain 
following form of particular solution for pressure in first approximation step: 
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In system of equations (1), (3), (4) we replace functions v , vr, vz by the unknown velocity 
components )1()1()1( ,, zr vvv  in first step of approximation and we replace pressure p by the function 

)1(p  determined in equation (19), where we average in gap height direction the terms describing 
viscoelastic properties. Into the terms O , O z, O , O z we put velocity component (12), (13) 
obtained in the basic step approximation. We obtain following system of equations, where all 
terms describing visco-elastic oil properties are averaged in gap height direction: 
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where: 
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whereas 0<r<  , 0< b z<+b.  
In this case the first approximation solutions of the system of partial differential equations 

(20)-(22) under the boundary conditions (6), (7ab) has the following particular solutions: 
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where 0<r<  , 0< b z<+b.  
To determine radial oil velocity component )1(

rv  and unknown pressure )1(p  in first 
approximation step, we integrate continuous equation (22) with respect to the variable r in 
following form: 
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Symbol C denotes the integration constants. On the equation (27) we impose following 
boundary condition: 0)1(

rv for r=0 and for r= . Hence integration constant C=0 and we obtain: 
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In further transformation of equation (28) we use following gut known integral identities: 

 ),z,,r(v
R

z,dr
)z,,r(v

R
1dr)z,,r(v

R
)1(

z,

0

)1(z,

0

)1(    (29) 

Previously satisfied conditions: 
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we put into expressions (29) and such obtained results we substitute into (28). Hence we have:  
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Oil velocity components )1()1( , zvv  in first approximation step (25), (26) we put into equation 
(31). After calculations and term ordering we obtain following equation for pressure determination 

z,p )1(  in first approximation step: 
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Pressure function p(1) is determined from (32) using boundary conditions (7ab) i.e.: 
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We put into equation  (27), oil velocity components )1(
z

)1( v,v  in first approximation step (25), 
(26). After calculations and term ordering we obtain radial component of oil velocity in first 
approximation step for 0 r , 0 <2 , b z b [5]: 
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4. Scetch of n-th approximation step 
 

Now we are going to the n-th (2,3,…) step approximation of solutions. At first we determine 
the pressure changes in gap height direction. Therefore we use the averaged terms describing 
visco-elastic oil properties in equation (2). Into abovementioned terms we put n 1 step 
approximation i.e. solutions )1n(

z
)1n( v,v , for n=2,3,…, thus after integration respect to the 

variable r, we obtain following expression for the first derivative of the n-th pressure 
approximation step: 
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After calculations, terms ordering and reduction and neglecting the terms of order 2, , 2 
formula (36) leads finally to the form: 
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Integration of equation (37) with respect to the variable r gives the n-th pressure approximation 
in following general form: 
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and C2 denotes integration constant. It is easy to see, that the total pressure in n-th approximation 
z,,rp )n(  varies in gap height direction r and on the journal surface in place r=0 attains unknown 

function z,p )n( . On the ground of above mentioned assumption we obtain following form of 
particular solution for pressure in second approximation step: 
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In system of equations (1), (3), (4) we replace functions v , vr, vz by the unknown velocity 
components )n(

z
)n(

r
)n( v,v,v  in n-th step of approximation and we replace pressure p by the function 

)n(p  determined in equation (39). We average in gap height direction the terms describing 
viscoelastic properties. Into the terms O , O z, O , O z we put velocity component (25), (26) 
obtained in the n-th step approximation. Hence we have ,...O,O )1n(

z
)1n( . Finally we obtain 

following system of equations, where all terms describing visco-elastic oil properties are averaged 
in gap height direction: 
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whereas 0<r<  , 0< b z<+b, n=2,3,4,… .  
We take into account the same procedure of solutions as in n-1 approximation step from 

equation (25) to (35). Hence the system of partial differential equations (40)-(41) under the 
boundary conditions (6), (7ab) has the following particular solutions in n-th approximation step: 
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for 0   , b z<+b, 0  r  . 

Hydrodynamic pressure   in n-th approximation step determines the following partial 
differential equation: 
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5. Conclusions 
 

This paper presents the method of non-classic solution of the oil velocity components, and 
hydrodynamic pressure distribution in slide cylindrical micro-bearing gap taking into account 
the full terms of viscoelastic Rivlin-Ericksen constitutive relations. The main achievements are 
referring to the calculation algorithm elaboration for determination of 3D pressure distribution in 
journal bearing gap where hydrodynamic pressure changes in gap height direction.  
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