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1. Introduction 

In the paper there is described a procedure for 
reliability assessment of complex systems using one 
shot items in its construction. The main principles 
of the system’s function are similar to sequential 
systems in mathematical terms. Behaviour models 
of general sequential systems, their function and the 
assessment of the right and wrong function are 
described for example in [13], [14], [15], [16], [17], 
[18], [19], [20], [21], [22]. Some other books deal 
with very general theoretical suggestions of the test 
programmes for one shot items [1], or a different 
specific area of mathematics, e.g. sequential 
systems impact assessment on mass service process 
performance ([1], [1], [2], [3]). The books 
suggesting the methods on how to assess sequential 
systems reliability offer specific and interesting 
mathematical applications which can be found in 
[4], [5], [6], [7], [8], [9], [10], [11], [12]. The 
articles are mostly very theoretical and do not 
include in any way the possibility of one shot 
items/devices practical implementation in the 

complex system construction. The solution 
principle is based only on a sequence course of a 
certain process or a system function. The sequence 
course is given for example by the main function 
completion (e.g. pressers, assembly lines, phase 
course process, shots, etc.).  
One shot items/devices implementation in the 
complex system construction extends the real 
possibilities of technical systems and improves the 
level of dependability and safety. This extension 
could be in both military and civilian systems, or 
space programs [35]. 
The basic presumptions of the usage of one shot 
items, and example applications can be found in 
[28], [29] and [35]. It has been shown [48] that 
besides weapon systems the one shot items are also 
applied to plenty of aircraft applications, e.g. to the 
aircraft F-16 Fighting Falcon. 
The general and basic approach to test the 
performance and make an assessment in order to 
obtain and demonstrate the reliability level of one 
shot items is stated in [10], [32], [33], [34] and [35]. 
The demonstration of the required reliability level 
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of one shot items/devices in relation to the costs 
which are spent during the test are described in 
[23], [24], [26], [27], [29], [31], [32] and [36]. The 
entire test effectiveness of development test 
programs for one shot items/devices is discussed, 
e.g. in [23] or [24]. In the books [24] and [29] there 
are recommended design changes forms, the usage 
of highly/ultra reliable materials for one shot 
items/devices construction (but here they are 
diverted to reliability growth programs). The 
method of searching and detection of different 
failure modes and their impact on development 
programs of one shot items/devices is described in 
[25] and [26]. Also in the books [27], [28] and [32] 
there are recommended forms and methods on how 
to perform tests, especially acceleration tests with 
some stress imposed (e.g. thermal or mechanical 
stress), or highly accelerated tests, HALT, for one 
shot items/devices. The reliability growth program 
in relation to the operational state increase of one 
shot items/devices together with the systems which 
can use one shot items for their function is very 
well developed in [23], [25], [26] or [30]. 
This contribution is aims to contribute to a solution 
of dependability qualities of the complex (in this 
case) weapon system as an observed object. Some 
ways on how to specify a single value of a 
dependability measure of a set is shown. The aim of 
the paper is to verify the suggested solution in 
relation to some functional elements which 
influence the fulfilment of a required function in a 
very significant manner ([37] and [38]). The PL-20 
aircraft gun is an example of the application of the 
procedures of a complex system with one shot items 
was designed for the needs of the Czech Air Force. 
It was fielded into its armament as an onboard 
weapon for the L-159 advanced light combat 
aircraft. It refers to a 20-mm calibre twin gun, the 
automatic function of which is actuated by powder 
gases from its barrels. It is a typical example of a 
complex, sequential, mechatronic, weapon system 
working with one shot items. It is a barrel shooting 
gun – fast shooting twin-barrel cannon. Speaking 
about the system failure it means a failure of the 
round of the automatic weapons. This will result in 
discontinuation of firing and a non-fired round 
remains loaded in a chamber of the gun. An 
external action is then necessary to eject a failed 
round from the chamber and to charge a new round 
in order to continue firing. To this end the aircraft 
gun is equipped with special pyrotechnic cartridges. 
When a round fails, a pyrotechnic cartridge is 
automatically initiated and powder gases generated 
during its firing provide for an ejection of the failed 
round and continuation of firing. A probability of 
accomplishment of a mission is the most important 

measure for assessment of reliability of a gun as a 
whole. A mission is considered as successfully 
accomplished if it was possible to fire all rounds 
that were charged into the gun ammunition feeding 
belt prior to the mission. 
From the description of the gun, it is evident that 
the probability of accomplishment of a mission 
depends both on the reliability of used rounds and 
pyrotechnic cartridges. Of paramount importance 
that influences the probability of accomplishment of 
a mission is the quantity of pyrotechnic cartridges 
used in the design of the gun. The greater the 
number of pyrotechnic cartridges that can be 
applied during an accomplishment of a mission, the 
higher the probability of fulfilment of a mission. On 
the other side, a greater number of pyrotechnic 
cartridges brings about many problems – higher 
weight of a weapon, more complex 
design/construction and more complicated fire 
control system, etc. 
A requirement during the development and design 
of this gun was to determine the optimum number 
of pyrotechnic cartridges that would ensure 
fulfilment of a mission. For this purpose a 
mathematical model of the dependence of the 
probability of accomplishment of a mission on the 
number of used rounds and pyrotechnic cartridges 
and their reliability was created. 
Theory of queuing systems is a well-developed 
mathematical discipline, and in principle relates to 
this work. Based on it a substantial number of 
positive results have been generated. The results 
obtained in studying queuing systems and networks 
proved to be of significant profundity and 
importance from mathematical and practical points 
of view. In fact queuing systems and networks are 
able to model a broad class of real technical 
systems, info-telecommunication systems and 
networks ([2]). 
Many scientific works and papers both in journals 
and conference proceedings have presented the 
approach to reliability assessment of k-out-of-n 
systems ([1], [2], [39] or [40]). All of them presume 
that there is a system consisting of n parts from 
which at maximum k may fail in order to guarantee 
the system to work. Our assumption is partially 
similar. The whole system for the main function 
consists from n queuing elements waiting until they 
will come into service. The main part of the system 
(with n elements) is backed up by another system 
with m elements which are supposed to restore just 
the k failed elements immediately after a failure 
occurs. Also the elements from the supporting 
system may fail which might cause an instant stop 
of the main function performance with all related 
consequences (e.g. costs penalties, endanger, etc.). 
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Some work has even been carried out in the field of 
testing and costs spent during one-shot items 
technical life ([41]). 
Speaking about the weapon set of the example it 
consists of mechanical parts, electric, power and 
manipulation parts, electronic parts and 
ammunition. For the purpose of use in the paper it 
will be dealt with as isolated functional blocks and 
ammunition only. In this case the ammunition is as 
recommended, standardised rounds and pyrotechnic 
cartridges. 
Single parts of the set can be described with 
qualitative and most importantly quantitative 
indices which present their quality. In this paper 
quality is dealt with in terms of dependability 
characteristics. Primarily probability values which 
characterize single indices, and which describe the 
functional range and required functional abilities of 
the set, are used. Also focus is given to the part of 
handling rounds and pyrotechnic cartridges which 
are crucial for this case. In order to continue the 
work it is necessary to define some basic terms and 
specify every function. 
We define following basic terms and definitions. 
The term object is commonly used with reference to 
reliability analysis. The definition for an object is 
the same as that used in [42]. Consequently there is 
a need to describe the measures of the basic object 
as stated in [42]. 
A one-shot device/item: 
“is an item which is required to perform its function 
only once during normal use. Such items will 
usually be destroyed during their normal operation 
and cannot therefore be fully tested. The reliability 
required from one-shot devices is normally high” 
[37]. 
One-shot items are usually required to perform a 
function once only since their use is normally 
accompanied by an irreversible reaction or process, 
e.g. chemical reaction or physical destruction. 
The reliability of a one-shot item could be defined 
as the ability to perform the required function only 
once, and only when demanded, under stated 
conditions and for the specified period of time. 
Object’s (weapon set) function: 
The main function: The main function of the object 
is putting into effect the fire from a gun using 
standard ammunition. 
The step function: Manipulation with ammunition, 
its charging, initiation, detection and indication of 
ammunition failure during initiation, initiation of 
the backup system used for re-charging of a failed 
cartridge. 
It is expected that the object will be able to work 
under different operating conditions especially in 
different temperature spectra, under the influence of 

varied static, kinetic and dynamic effects, in various 
zones of atmospheric and weather conditions. 
In this case any of the operating conditions 
mentioned above are not taken into account while 
performing the assessment. However, their 
influence might be important while considering 
successful mission completion. 
One of the main terms which is to be developed is: 
Mission: It is an ability to complete a regarded 
mission by an object in specified time, under given 
conditions and in a required quality. 
In the paper it is the case of cannon ability to fire a 
required amount – a number of shot ammunition at 
a target in the required time, and under given 
operating and environmental conditions. 
As it follows from the definition of a mission it is 
the case of a set of various conditions which have to 
be fulfilled all at once in a way to satisfy the 
requirements completely. The object is supposed to 
be able to shoot a required amount of ammunition 
which has to hit the target with required accuracy 
(probability). The only focus in this paper is the 
ability of the object to shoot [42], and there will be 
no consideration given to the evaluation of the 
result of shooting, weapon aiming, internal and 
external ballistics, and weather conditions.  
 
2. Reliability of one shot item 

It follows from the definition concerning one-shot 
items that differentiation into two basic types of 
failures can be made: 

- an item does not perform a required 
function when needed; 

- an item performs a required function when 
not needed. 

Reliability of a system where the item is used as 
well as its ability to complete a required mission is 
influenced by the first type of failure. System safety 
in particular is influenced by the latter type of 
failure because an inadvertent initiation of any one-
shot item can lead to the hazard of personnel or 
equipment. In view of the nature of the problem 
being solved focus is upon the first type of failures 
only. They are the kinds of failures which may lead 
to weapon function disruption. 
The reliability of a one-shot item or system with 
one-shot items should normally be expressed or 
quantified as a probability of mission success (see 
equation (1)). The conditions under which the 
mission is regarded as completed depend on many 
circumstances – on the nature of a mission, on one-
shot items having been used, on the purpose of a 
system etc. Dealing with automatic weapons the 
mission is completed only in case when all the 
rounds placed in a magazine or in ammunition feed 
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belt are able to be shot, and if this happens without 
any external intervention.  
If one-shot item reliabilities are assumed to be 
statistically independent, the reliability of all one-
shot items may be incorporated into the final 
calculation of the system reliability by multiplying 
the portion of the model representing the one-shot 
items by the portion representing other parts of the 
system [38]: 
 

   ∏ −=
=

=
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i
iws pRR
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)1(     (1) 

 
The total reliability Rw of the system is represented 
by multiplication - ∏ - of its partial items 
reliability – (1 – pi), where i = 1, …, n , which are 
not one-shot items. Reliability of these items is time 
dependent - it means that the probability of failure 
occurrence of these items rises with operating time. 
Reliability Rw is used to describe the reliability of a 
weapon as a whole. On the other hand the reliability 
of a one-shot-item is regarded as time independent 
and it means that the probability of a failure is 
unchanged with operating time [38]. 
Referring to fire arms the operating time is usually 
measured by a number of performed shots, and 
using the number of the shots we quantify relevant 
reliability performance measures. Mean time 
between failures for example is expressed as a mean 
number of shots between failures – MNSBF and a 
failure rate λ is related to a single shot. If we take 
into account an exponential distribution of time 
between failures, the failure rate can be expressed 
by equation 1:  
 

   
MNSBF

1=λ      (2) 

 
On the basis of these assumptions the reliability Rw 
can be described as a function of the number of 
rounds shot (e.g. [2] and [38]): 
 
   )exp()( nnRw λ−=     (3) 
 
Let’s presume that for an automatic weapon we use 
rounds with the failure probability pr and a 
magazine has a capacity of n rounds. The reliability 
of a system is described as the probability that all 
the rounds will be shot without external 
intervention and it can be expressed in the 
following formula using (1) and (3): 
 

   n
rs pnR )1()exp( −−= λ    (4) 

 

The formula shows that the reliability of a weapon 
system depends mainly on the failure probability of 
the rounds pr and the number of the rounds n with 
failure rate λ. The dependence is represented 
graphically in the diagram in Figure 1. The diagram 
demonstrates that despite relatively high reliability 
of rounds the reliability of a system decreases 
rapidly with the growing number of rounds. 
Regarding each automatic weapon we have to take 
into account the possibility of a round failure and 
then to provide recharging of the gun.  
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Figure 1. Weapon reliability as a function of rounds 
number 

 
To describe the reliability of a system with one-shot 
items it is important to be able to specify the 
occurrence probability of a particular number of 
faulty items taken from a total number of used 
items. In most cases the initiation of single one-shot 
items might be regarded as a succession of mutually 
independent effects, and that is why we can use the 
binomial distribution to describe the reliability.  
The following formula (5) demonstrates the 
probability of failure of the x particular items which 
might occur during operation of a system [44] and 
[45]. 
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The probability of a failure of at most x items 
during operation of a system may be specified in a 
similar way [3] and [4]: 
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3. Description of a process and the aircraft 
gun reliability 
 

3.1. Direct calculation of aircraft gun 
reliability 

One way of determining the aircraft gun reliability 
is based on the direct calculation approach. We 
need to determine the required number of 
supporting pyrotechnical cartridges which are 
needed for successful completing of the mission. 
The next issue is the level at which the probability 
of mission success is acceptable. 
 
3.1.1. Mathematical model 

In general the condition under which the mission is 
completed may be defined as – during the mission 
the number of round failures is equal to the number 
of working pyrotechnic cartridges. This can be 
expressed as:  

 
   YmX −≤      (7) 
 
It is obvious that during the mission a failure of the 
aircraft gun itself must not occur either. The 
probability of completing the mission can be given 
in the following formula:  
 
   ( )YmXnRR ws −≤= Pr)(    (8) 
 
A mathematical model of aircraft gun reliability is 
based on analysis of the possible scenarios of 
aircraft gun operation which lead to completion of 
the mission. These particular scenarios are specified 
below and the probability of their implementation is 
determined.  
A typical feature of the other scenarios leading to 
completion of the mission is a failure which always 
occurs to a particular number of rounds and 
automatic recharging of an aircraft gun is done by 
pyrotechnic cartridges. These scenarios will be 
implemented only under the condition put in 
formula (7) which says that a number of working 
pyrotechnic cartridges is at least the same as the 
number of round failures.  
The equation (7) will be transformed into the form 
which enables calculation of the probability of 
completing the condition using formula (6):  
 
   XmY −≤      (9) 
 
Scenarios of this description will be marked with Sx 

and the subscript x stands for the number of round 
failures considered in the scenario. Only the 
scenarios which lead to completing the mission are 

considered, and that is why the number of 
considered failures can equal at best the number of 
used pyrotechnic cartridges x ≤ m. If there is a 
failure of more rounds than is the number of used 
pyrotechnic cartridges, the mission will be always 
uncompleted.  
The probability of implementation of the particular 
scenarios can be specified as a product of the 
reliability of the gun itself Rw as well as the 
probability of occurring exactly x round failures, 
and the probability of occurring at most (m – x) 
failures of the pyrotechnic cartridges. This 
probability can be put in the following formula:  
 
   ( ) ( )xmYxXRw −≤== PrPr)(SPr x             (10) 
 
Using equations (5) and (6) we can transform the 
formula (10) into the form as written below:  
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The formula mentioned above is universal for all 
the scenarios where 0 ≤ x ≤ m. 
It follows from the analysis that an aircraft gun 
completes the mission only at that time if some of 
the scenarios mentioned above Sx are achieved. If 
the mission completion is marked as an event with 
S, the conditions under which the mission is 
completed can be expressed this way [43]:  
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In view of the fact that the particular scenarios 
present mutually disjunctive events, the probability 
of event occurrence S in terms of mission 
completion can be expressed as a sum of 
probabilities of single scenarios occurrence Sx [37]:  
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Equation (13) allows the reliability of an aircraft 
gun to be assessed. The next section details how is 
done. 
 
3.2. Calculation based on the possible 
scenarios 

Another approach to determine the probability of 
mission success as well as the required number of 
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pyrotechnical cartridges supporting the main 
function is based on the possible scenarios which 
may occur during the system function. 
Let’s consider the following blocks: 

- manipulation with ammunition, its 
charging, initiation, failure detection and 
indication during initiation, initiation of a 
backup system in order to recharge a failed 
cartridge, all mechanical parts, all electric 
and electronic parts, interface elements with 
a carrying device - Block A; 

- ammunition – Block B; 
- pyrotechnic cartridges – Block C. 

The process as a whole can be described as: 
The task is to find out their minimum number 
which is essential for completing the mission 
successfully. 
 
3.2.1. Mathematical model 

To meet the needs of the requirements the 
successful completion of the mission is to be 
expressed in a mathematical way. It is known that 
the number of rounds n in an ammunition belt is 
final. It is also known that an event/failure of a 

round B  (ammunition block function – B) can 
occur with a probability pn. All the requirements 
and specifications mentioned above will be used in 
the further steps. 

A number of occurrences Xn of an event B  follows 
the distribution in Bernoulli’s row n of independent 
experiments, and probability of event occurrence 

P( B ) = pn. The number pn is the same in every 
experiment (e.g. [43] and [44]). 
Because there is an occurrence of the number of 
events in an observed file it has a counting 
distribution of an observed random variable which 
is in this case the number of failed rounds. A 
probability function of a binomial distribution can 
be expressed as: 
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   x∈{0,1,2,...,n}    
   
In order to specify the mean number of possible 
failures in an ammunition belt of a given length it is 
to quantify the formula (14) and replace n by a real 
number of rounds in an ammunition belt. 
On the basis of the facts mentioned above it is 
obvious that the process of fulfilling the 
requirements by the back up system of 
pyrotechnical cartridges follows a geometrical 
distribution (Ge). It means that the process of 
fulfilling the requirements repeats so often until it 

meets them in terms of reversion of all the process 
to an operational state. Pyrotechnic cartridges also 
have failure rate pm (failure probability) and there is 
a limited number of them. It means that a failure 
can occur up to m-times.  
It is necessary to assess the succession of 
independent attempts, and the probability of an 
observed event occurrence equals the same number 
pm in each attempt. The quantity Xm is a serial 
number of the first success which means that a 
required event occurs. The event here means a 
function of a block C, and a probability pm means an 

event occurrence C . Characteristics of the process 
are as follows. A probability function: 
 
 

   P(Xm=x) = pm
x-1(1-pm); x∈{1,2,3,…,m}            (15) 

 
It is a special case of a geometrical distribution 
when a probability of an event occurrence (a 
pyrotechnic cartridge failure) does not depend on 
the number of previous unsuccessful attempts of a 
value “0”. Characteristics of geometrical 
distributions like mean value E(Xm) (a mean number 
of pyrotechnic cartridges necessary for removing 
one failed round) and dispersion D(Xm) are obtained 
by calculation of the formula: 
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While completing the mission during either training 
or real deployment a few scenarios can occur, and 
the course of them depends on single functional 
blocks. To complete the mission Mis successfully 
single blocks are expected to be failure free as 
stated above. The function of the blocks mentioned 
above are designated as A, B, C, the opposite is 

;A ;B C . The relation can be expressed by using 
events this way: 
 
   Mis = A ∩(B∪ C)              (18) 
 
Using the probability expression, the probability of 
mission completion P(Mis) is given by: 
 
   P(Mis) = P(A) . [P(B) + P(C) - P(B ∩C)]        (19) 
 
3.2.2. Description of scenarios 

Description of the scenarios which can occur during 
completion or default of the mission relate only to 
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an ammunition block and to a redundant 
mechatronics system with pyrotechnic cartridges. 
The mission is completed: In the first case there can 
be a situation when all the ammunition of a certain 
amount which is placed in an ammunition belt is 
used up and a round failure occurs or it is used up 
and a round failure does not occur. In this case a 
backup system of pyrotechnic cartridges is able to 
reverse a system into the service. Using up can be 
single, successive in small bursts with breaks 
between different bursts, or it might be on mass 
using one burst. Shooting is failure free or there is a 
round failure occurrence n. In case a round failure 
occurs, a system which restores the function of 
pyrotechnic cartridges is initiated. There are two 
scenarios too – a system restoring a pyrotechnic 
cartridges function is failure free, or a pyrotechnic 
cartridge fails. If a function of pyrotechnic 
cartridges is applied, it can remove a failure m-
times. So a number of restorations of the function is 
the same as the number of available pyrotechnic 
cartridges. Another alternative is the situation that a 
round fails and in this case a pyrotechnic cartridge 
fails too. A different pyrotechnic cartridge is to be 
initiated and it should restore the function. This 
must satisfy the requirements that an amount of all 
round failures n is lower or at least equal to the 
number of operational (undamaged) pyrotechnic 
cartridges m. The mission is completed in all the 
cases mentioned above and when following a 
required level of readiness of a block A. 
The mission is not completed: In the second case 
the shooting is carried out one at a time, in small 
bursts or in one burst, and during the shooting there 
will be n round failures. At the time the failure 
occurs a backup system for restoring the function 
will be initiated. Unlike the previous situation there 
will be m pyrotechnic cartridges´ failures and a total 
number of pyrotechnic cartridges´ failures equals at 
least the number of round failures, and is equal to 
the number of implemented pyrotechnic cartridges 
M at the most. It might happen in this case that 
restoring of the function does not take place and the 
mission is not completed at the same time because 
there are not enough implemented pyrotechnic 
cartridges. 
Following the mathematical formula (16) it is 
possible to find out the probability of a number of 
round failures´ occurrences in an ammunition belt 
of a length n. Following equation (16) it can be 
specified as an expected mean value of a mean 
number of round failures in an ammunition belt of a 
given length. 
The mean value result is recommended to be used 
for the maximum length of an ammunition belt 
(a maximum number of rounds) which could be 

implemented into a weapon set concerning 
construction as well as tactical and technical views. 
The result informs of a minimum number of 
pyrotechnic cartridges which are to be applied for a 
successful completion of the mission. 
In this case there is a threat of a pyrotechnic 
cartridge failure which could cause a system failure 
(as far as a number of round failures is higher than a 
number of available pyrotechnic cartridges). In this 
case it is not possible to complete the mission 
successfully. 
In order to assess dependability of the shooting 
function it is necessary to know a number of 
pyrotechnic cartridges and, depending on this, the 
probability of completing the mission. To fulfil the 
requirements it is suggested the following three 
steps are carried out: 

1) To determine the required number of 
pyrotechnic cartridges; 

2) To quantify generally probabilities of 
completing the mission; 

3) To quantify exactly probabilities of 
completing the mission 

Following the steps mentioned above it is suggested 
to follow this method. 
 
Ad 1) To determine the required number of 
pyrotechnic cartridges 
When calculating the mean number of failed rounds 
E(Xn) which is determined from the maximum 
number of rounds n in a ammunition belt (see 
above) and the probability of a round failure 
occurrence pn, see the formula (16), it is to get a 
minimum recommended number of pyrotechnic 
cartridges which are supposed to guarantee 
completing the mission in case a round fails. 
The calculation would be successful in case a 
pyrotechnic cartridge failure does not occur. 
However, even a system of pyrotechnic cartridges 
concerning a failure occurrence depends on 
counting the distribution of a discreet random 
variable which is specified in this case by a 
geometrical distribution (because the system is 
activated so long until the observed and required 
event occurs – in terms of repairing the failure). It is 
suggested to calculate the mean number of 
pyrotechnic cartridges´ failures following formula 
(20). For the calculation it is required to know only 
the pyrotechnic cartridge failure probability pm. On 
the basis of this calculation the average number of 
pyrotechnic cartridges required to repair a failure of 
one round can be obtained. 
In order to complete the mission a number of 
available (operational) pyrotechnic cartridges 
should be at least the same as the number of failed 
rounds. When the mean values are multiplied then it 
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is possible to obtain the total number of pyrotechnic 
cartridges M which will guarantee completing the 
mission (even in the situation when besides failed 
rounds there are failed pyrotechnic cartridges too). 
 

   M = E(Xn) . E(Xm)= 
m

n

p
pn

−1
.              (20) 

 
Logically the number of pyrotechnic cartridges 
which are essential for completion of the mission 
successfully is continually proportioned to the 
number of rounds n and to the probability of their 
failure pn, and inversely proportioned to the 
probability of pyrotechnic cartridge “success” 1-pm. 
The figure 2 shows a typical course of 
dependability M (pn;pm), it means a invariant M 
which depends on variables pn and pm. This way 
might be the first of the alternatives on how to solve 
the problem. It suggests the total number of 
pyrotechnic cartridges which are essential for 
completing the mission but it does not show the 
way of how to quantify the probability of mission 
completion. 
While recording the distribution parameters an 
equivalent m standing for a value M is to be used. 
 

 
Figure 2. Course of dependability of a number of 
pyrotechnic cartridges M on variables pn and pm 

 
Ad 2) To quantify generally the probability of 
completing the mission 
In this case it is necessary to follow the solution 
which has been stated in the part Ad 1. It should be 
taken into account that there is a number of 
pyrotechnic cartridges required for completing the 
mission. So, it has to be determined an α fractile 
which provides an upper limit of the number of 
rounds which fail with probability α. After this it 
has to be specified β fractile which provides an 
upper limit of the pyrotechnic cartridges which fail 
with probability β. 
While working with fractiles this general 
information needs to be followed. 100% fractile of 

a random variable X is a number xp, and a 
probability p where 0<p<1 is denoted by 
 
   P(X ≤ xp) ≥ p               (21) 
 
And 
 
   pxP

pxx
≤

−→
)(lim               (22) 

 
The fractile of an observed random variable which 
is to work with is expressed by 
 

   ( )∑ ==
=

α

α

x

n
n nXPp

0
              (23) 

 
In words this means – the occurrence probability n 
of a number of events is specified by a sum of the 
probabilities for the occurrence of all events from 0 
to n. 
In this case it is necessary to take into account that 
round failures´ distribution is binomial Bi=(n;pn) 
and a fractile determining an upper limit of a 
number of rounds which might fail with probability 
α will be designated as xα. Given as 
 
   ( ) αα =≤ xXP n               (24) 
 
Given that the general distribution of a pyrotechnic 
cartridge follows a binomial distribution Bi(m;pm) 
and a fractile providing an upper limit of a number 
of pyrotechnic cartridges which fail in probability β 
is denoted by βy . Therefore 

 

   ( ) ββ =≤ yYP m               (25) 

 
The equation can be expressed as 
 
   ( ) ββ =−≥− ymYm mPr              (26) 

 
The following interpretation of a fractile yβ is useful 
for the other steps – at least βym−  of pyrotechnic 

cartridges will be available with probability β. 
As it was stated before given the total number of 
pyrotechnic cartridges M which are essential for 
completing the mission is known, the requirement 
is shown in the following equation: 
 
   ( ) αβ xyM ≥−                                       (27) 

 
The equation shows that the number of available 
pyrotechnic cartridges (it is obtained when failed 
pyrotechnic cartridges are subtracted from the total 
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amount of all applied pyrotechnic cartridges) will 
be at least the same (it would be better to have a 
higher number) as the number of failed rounds. If 
this assumption is fulfilled, it can be expected that 
the mission will be completed with probability pmis. 
Probability of completing the mission can be 
defined as. 
 
   pmis = xα . yβ                (28) 
 
The formula can be described like this – the 
probability of completing the mission equals a 
multiplication of probabilities xα; yβ ∈ (0;1) which 
provide an upper limit of failed rounds and an upper 
limit of failed pyrotechnic cartridges for required 
levels of fractiles. 
If the level of mission completion probability is 
known in advance, e.g. it is specified by technical 
requirements for a set, it is possible to be put into 
the formula which is based on an assumption that 
the mission will be completed in case a number of 
available pyrotechnic cartridges is at least the same 
as rounds which are supposed to fail. 
 

   βα ymx −≤                (29) 

 
If it goes this way, the mission will be completed 
with the probability expressed in the formula (28). 
If the values α, n, β, pmis, are known it is possible to 
find a value m (M) using quantitative methods. 
At the end of this contribution there is an example 
of this solution. 
 
Ad 3) To quantify exactly the probabilities of 
completing the mission 
In the last step it will be examined how to quantify 
an exact value of mission completion probability 
pmis. On the basis of the assumption described above 
it is known that the probability of completing the 
mission depends on the reliability of two key 
blocks. It is an ammunition block (B) and a 
pyrotechnic cartridges´ block (C). Following the 
last two alternatives it might be specified that both 
require a total number of pyrotechnic cartridges 
which is essential to complete the mission (in case 
all conditions are met), and a general value of 
mission completion probability in case general 
conditions are followed. This solution might be 
satisfied under certain circumstances but it is not 
always the case. Therefore it is suggested the last 
way on how to quantify the probability of 
completing the mission based on a more exact 
method. 
It is necessary to define indices and quantities 
which effect directly the probability of completing 

the mission pmis. These are the number of rounds n, 
the probability of a round failure occurrence pn, the 
number of pyrotechnic cartridges m, and the 
probability of a pyrotechnic cartridge failure 
occurrence pm. A general function of mission 
completion probability and its variables is given by: 
 
   pmis(n,pn,m,pm)                                      (30) 
 
Further steps follow well known assumptions. The 
function of a rounds´ failure takes the form of a 
binomial distribution with parameters n and pn – 
Bi(n,pn), and the number of rounds which may fail 
can be marked with k where k ∈ {0;1;2;…..;n}. 
Moreover, introduced are functions of a pyrotechnic 
cartridges´ failure Yk where k∈ {0;1;2;…..;m}. 
They show the possibility of a pyrotechnic cartridge 
failure while shooting as soon as it is necessary to 
remove a failed round. Let’s assume that the sum of 
functions of a pyrotechnic cartridges´ failure will be 
lower than the number of available pyrotechnic 
cartridges used for removing a failed round, given 
by the following formula: 
 

   ∑ ≈≤
=

m

k
k mY

0
mYYY k ≤++ ......10             (31) 

 
Following the assumption mentioned above it is 
considered the case that the first available 
pyrotechnic cartridge follows a geometrical 
distribution of a function of its activity Ge(pm) 
during the failure of the 
k-th round Yk. It can be described as: 
 
   Yk ~ Ge(pm)               (32) 
 
The equation showing the probability of completing 
the mission is: 
 

( ) ( ) (∑ +++==
=

n

k
mn YYPkXPpmpnP

0
10 .....,,,

)mYk ≤+                (33) 
 
where in case k=0 (it reflects a situation where 
there is no round failure) a function would be 
specified additionally provided that P(Y1+….Yk ≤ 
m)=1. And in order to solve the probability value of 
completing the mission it is possible to use so 
called completing the formula taking advantage of 
forming functions. From a mathematical point of 
view this is much more demanding but it offers a 
very exact value expressing the probability of 
completing the mission pmis while using a variation 
of function factors. On its basis it is easy to prove 
the dependability of the total number of used 
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pyrotechnic cartridges on a level of mission 
completion probability pmis. 
 
4. An example of possible solution 

Ad 3.1 
A designed model makes it possible to carry out an 
analysis which assesses systems´ sensitivity to 
changes of input parameters of the model. When 
calculating all the results stated below the reliability 
of a gun itself Rw = 0,9999 is considered. Final 
results of mission non-completion probability 
which are shown in the graphs below were 
calculated with the formulae (11), (13) and (14).  
In the diagram in Figure 3 there is a dependency of 
the mission non-completion probability on the 
number of pyrotechnic cartridges when considering 
rounds of different reliability. The diagram shows 
that the bigger number of pyrotechnic cartridges 
used in the construction of an aircraft gun, the more 
sensitive reaction of the system is to a change of the 
rounds´ reliability.  
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Figure 3. Influence of m and pr on probability of 

mission failure 
 
In the diagram in Figure 4 there is a dependency of 
mission non-completion probability on the number 
of pyrotechnic cartridges when considering a 
different number of rounds in an aircraft gun 
magazine. It follows from a course of dependencies 
that with a growing number of rounds which are 
supposed to be used during a mission the final 
effect of using pyrotechnic cartridges decreases.  
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Figure 4. Influence of of n and m on probability of 

mission failure 
 
In the diagram in Figure 5 there is a dependency of 
mission non-completion probability on reliability of 
pyrotechnic cartridges when considering a different 
number of pyrotechnic cartridges.  
It follows from the diagram that a change of the 
level of pyrotechnic cartridges reliability influences 
the final reliability of systems on a very limited 
scale. It results from this that extremely high 
requirements for reliability of pyrotechnic 
cartridges are not legitimate.  
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Figure 5. Influence of pp and m on probability of 

mission failure 
 
In Figure 6 there is a method on how to determine 
an optimum number of pyrotechnic cartridges 
which are necessary to achieve reliability of a 
system required.  
Let´s presume that relating to the system defined 
with the parameters Rw= 0,999, pr = 0,001, pp = 
0,001, n = 200 it is required that Qs ≤ 1,0E-04 
means the probability of mission non-completion. 
The aim of the conception is to specify this number 
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of pyrotechnic cartridges which guarantees that 
required reliability will be achieved.  
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Figure 6. Determination of optimal number of 

pyrotechnic cartridges 
 
By means of input quantities and equations (12), 
(13), and (14) we put into the graph the dependency 
of mission non-completion probability on the 
number of used pyrotechnic cartridges and the 
required probability will be put into the diagram. 
The diagram in Figure 5 shows that the required 
level of reliability value will be achieved when 
using three pyrotechnic cartridges. 
 
Ad 3.2  
Given: 
pn = 0,000 1 - round failure probability; 
n = 200 - maximum rounds´ number during one 
process; 
pm = 0,01 - pyrotechnic cartridge failure probability; 
pmis = 0,99 - probability of mission success. 
Solution according to “Ad 1)”: It has to be found a 
sufficient number of pyrotechnic cartridges used for 
removing a possible failure. 
 

   02,0
01,01

0001,0.200

1

.
≅

−
=

−
=

m

n

p

pn
M  

 
The formula shows that having at least one 
pyrotechnic cartridge is enough to complete the 
mission successfully. However, it is not possible to 
quantify the probability for completing the mission. 
Solution according to “Ad 2)” in section 3.2.2: It is 
necessary to find a level of mission completion 
probability pmis as well as the required number of 
pyrotechnic cartridges. The values described above 
are to be followed. The solution is put in the table. 
 
 
 

Table 1. Results of example 

α αx  
α

β misp
=  m 

0,991 1 0,998 991 2 
0,992 1 0,997 984 2 
0,993 1 0,996 979 2 
0,994 1 0,995 976 2 
0,995 1 0,994 975 2 
0,996 1 0,993 976 2 
0,997 1 0,992 979 2 
0,998 1 0,991 984 2 
0,999 1 0,990 991 2 

 
If it is taken into account this solution and starting 
marginal conditions, two pyrotechnic cartridges will 
be enough to complete the mission successfully 
with 0,99 probability. 
 
5. Conclusion 

The results presented in this article, related partially 
to queuing processes, systems and reliability 
problems, are very recent. It is obvious that further 
advancement will require consideration of such a 
priori distributions of the values, and other 
traditional queuing systems as well the restorable 
devices input parameters that can be of practical 
interest. The distributions of the variables that 
characterize the functioning of different system 
types can be calculated after they have been 
randomized taking into account the given a priori 
distributions. 
This contribution is an extension of the outputs of 
the work previously presented in several papers 
(e.g. [46], [47], [48] and [49]). It also serves as one 
of the alternatives for solving the problems 
connected with providing a function of an object 
whose function is redundant (backed up) because its 
failure is important to complete the mission. In 
order to solve the problem there have been methods 
chosen which are the most suitable for it. Other 
ways are also likely to be used in order to reach the 
aim but it is not the intention of this contribution. 
The example presented represents the possibility of 
carrying out a precise analysis of the influence of 
one-shot items and their reliability on the reliability 
of the weapon as a whole. Easy determination of an 
optimal number of pyrotechnical cartridges which is 
supposed to guarantee a required level of weapon 
reliability represents a significant advantage.  
One of the most interesting results of this analysis is 
the fact that the total level of weapon reliability is 
not influenced by the level of pyrotechnical 
cartridges reliability. The effort for increasing the 
level of pyrotechnical cartridges reliability does not 
increase the level of total weapon reliability.  
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On the other hand it can be observed that 
pyrotechnical cartridges application does increase 
the total value of weapon reliability and more over 
a relatively small amount of applied pyrotechnical 
cartridges does represent significant increase of the 
total reliability value of the weapon.  
Due to concrete application of this developed model 
for a specific weapon type it is not impossible to 
utilise the procedures mentioned above (after 
modifications needed) in order to estimate different 
weapons´ construction reliability. Another possible 
way of this model application is the estimation of 
complex system reliability where one shot items are 
applied.  
In such analysis it has to be taken into account a 
very sensitive thing which is the possible existence 
of failures dependencies (generally it means some 
events relationship). We presume in this analysis 
that some event occurrences are independent but 
when such a statement (we mean circumstance) is 
changed several consequences in analysis steps are 
supposed to be changed too. 
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