Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The transformations of river channels as a result of human activity may reflect the level of anthropogenic pressure. Recorded in macroscale, they are indicators of transformations for the larger part of the river basin, while in the microscale they usually refer to its fragment. The human activity that has the strongest influence on the fluvial processes, including suspended sediment transport, is the interference in the riverbed, such as hydrotechnical construction (create of water stages) or transformation of the river banks (concreting of the river banks). The aim of the research was to determine the impact of bridges on the process of water turbidity in the longitudinal profile of large lowland rivers. The research area was the lower reach of Vistula – bridge profiles: Torun, Bydgoszcz, Kiezmark (Poland) and bridge profile on Sukhona – a tributary of the Northern Dvina River near the city of Veliky Ustyug (Russia – Arkhangelsk Oblast). The research conducted in the years 2013–2017 included the measurements of water turbidity in the cross-sections of the above-mentioned rivers. The determinations of water turbidity were carried out using traditional (granulometry analysis) and nephelometric methods (devices: LISST-25X and turbidimeter). The impact of bridges on the variability of water turbidity was determined. The obtained results were related to the variability of depth conditions (bathymetric measurements) and hydrodynamics in the cross-section profile of the channel.
Czasopismo
Rocznik
Tom
Strony
155--164
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
autor
- Department of Revitalization of Waterways, Institute of Geography, Kazimierz Wielki University in Bydgoszcz, Koscieleckich Square 8, 85-033 Bydgoszcz, Poland
autor
- Department of Revitalization of Waterways, Institute of Geography, Kazimierz Wielki University in Bydgoszcz, Koscieleckich Square 8, 85-033 Bydgoszcz, Poland
autor
- Department of Revitalization of Waterways, Institute of Geography, Kazimierz Wielki University in Bydgoszcz, Koscieleckich Square 8, 85-033 Bydgoszcz, Poland
autor
- Department of Revitalization of Waterways, Institute of Geography, Kazimierz Wielki University in Bydgoszcz, Koscieleckich Square 8, 85-033 Bydgoszcz, Poland
Bibliografia
- 1. Agrawal Y.C., Pottsmith H.C. 2000. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol., 168, 89–114.
- 2. Allan J.D. 1998 Ekologia wód płynących. PWN, Warszawa.
- 3. Amini A., Melville B.W., Ali T.M., Ghazli A.H. 2012. Clearwater local scour around pile groups in shallow-water flow. Journal of Hydraulic Engineering, ASCE, 138(2), 177–185.
- 4. Austroads: Waterway design – A guide to the hydraulic design of bridges, culverts and floodways. 1994. Austroads, Sydney.
- 5. Babiński Z. 2002. Wpływ zapór na procesy korytowe rzek aluwialnych ze szczególnym uwzględnieniem Zbiornika Włocławskiego. Wyd. Akademii Bydgoskiej im. Kazimierza Wielkiego, Bydgoszcz.
- 6. Babiński Z. 2005. The relationship between suspended and bed load transport in river channels. Proc. International Symposium held at the 7th Scientific Assembly of the International Association of Hydrological Sciences, 182–188.
- 7. Babiński Z., Habel M. 2017. Impact of a single dam on sediment transport continuity in large lowland rivers. [in:] Wieprecht S., Haun S., Weber K., Noack M., Terheiden K. (ed.) River Sedimentation. Taylor & Francis CRP Press.
- 8. Baker C. 1980. The turbulent horseshoe vortex. J Wind Eng. Indus. Aerodyn, 6, 9–23.
- 9. Bouska W.W., Paukert C.P. 2010. Road crossing designs and their impact of fish assemblages of Great Plains streams. Transactions of the American Fisheries Society, 139, 214–222.
- 10. Brandimarte L., Montanari A., Briaud J.L. D’Odorico P. 2006. Stochastic flow analysis for predicting river scour of cohesive soils. Journal of Hydraulic Engineering, 132(5), 493e500.
- 11. Breusers H.N.C., Raudkivi A.J., 1991. Scouring. Hydraulic Structures Design Manual, 2, I.A.H.R., Balkema.
- 12. Briaud J.L., Ting F., Chen H.C., Gudavalli R., Perugu S., Wei G. 1999. SRICOS: prediction of scour rate in cohesive soils at bridge piers. Journal of Geotechnical and Geoenvironmental Engineering, 125(4) 237e46.
- 13. Chalov S., Habel M., Zawadskyi A., Golowlev P., Szatten D., Letnikova W., 2015. Morphodynamic consequences of anthropogenic impacts on the rivers of Northern Europe (Vistula and Northern Dvina). [in:] Erosion and fluvial processes. Chalov R. (eds.), Geographical Faculty of Moscow State University.
- 14. Cornish P.M. 2001. The effects of roading, harvesting, and forest regeneration on streamwater turbidity levels in a moist eucalypt forest. Forest Ecology and Management, 152, 293–312.
- 15. Du Boys M. P. 1879. Etudes du regime et l’action exercé par les eaux sur un lit a fond de gravier indéfiniment affouiable. Annales des Fonts et Chaussées, 5, 141–195.
- 16. Escauriaza C., Sotiropoulos F. 2011. Initial stages of erosion and bed-form development in turbulent flow past a bridge pier. J Geophys Res, 116:F03007.
- 17. Ettema R., 1980. Scour at bridge piers. Report No. 216, School of Engineering, The University of Auckland, Auckland.
- 18. Ettema R., Kirkil G., Muste M., 2006. Similitude of large-scale turbulence in experiments on local scour at cylinders. Journal of Hydraulic Engineering, A.S.C.E., 132(1), 33–40.
- 19. Felix D., Albayrak I., Abgottspon A., Boes R. M. 2016. Real-time measurements of suspended sediment concentration and particle size using five techniques. Proc. IOP: Earth and Environmental Science, 1057–1066.
- 20. Forde M.C., McCann D.M., Clark M.R., Broughton K.J., Fenning P.J., Brown A., 1999. Radar measurement of bridge scour. NDT&E International, 32(8),481e92.
- 21. Gregory K. J., Brookes A., 1983. Hydrogeomorphology downstream from bridge. Applied Geography, 3(2), 145–159.
- 22. Habel M., Babiński Z. Szatten D. 2017. A comparison of research approaches in estimation of volume changes of a bed load transport along a river course on the example of a large lowland river. Proc. of the International Conference of Computational Methods in Sciences and Engineering, 170009(1–4).
- 23. Habel M., Obodovskiy O., Onyshuk O., Babiński Z., Szatten D., 2019. Device for sampling sediment from water bodies, UA Patent 131903, filed June 25, 2018, and issued February 11, 2019, https://patents.google.com/patent/UA131903U
- 24. Hamill L. 1999. Bridge hydraulics. E& FN Spon, London.
- 25. Hosseini R., Amini A. 2015. Scour Depth Estimation Methods around Pile Groups. KSCE Journal of Civil Engineering, 19(7), 2144–2156.
- 26. Hu B., Yang Z., Wang H., Sun X., Bi N., Li G. 2009. Sedimentation in the Three Gorges Dam and the future trend of Changjiang (Yangtze River) sediment flux to the sea. Hydrol. Earth Syst. Sci., 13, 2253–2264.
- 27. HydroSHEDS. 2008. USGS, http://www.worldwildlife.org/hydrosheds.
- 28. Khosronejad A., Kang S., Sotiropoulos F. 2012. Experimental and computational investigation of local scour around bridge piers. Advances in Water Resources, 37, 73–85.
- 29. Knighton D. 1998. Fluvial forms and processes. A new perspective. Co-published John Wiley and Sons Inc., New York.
- 30. Kondolf G. 1997. Hungry water: Effects of Dams and Gravel Mining on River Channels. Environ. Manage, 21(4), 533–551.
- 31. Kondracki J. 2002. Geografia regionalna Polski. Wyd. Nauk. PWN, Warszawa.
- 32. Leopold L.B., Maddock T. 1953. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications. United States Goverment Printing Office.
- 33. Melville B. 2008. The physics of local scour at bridge piers. Fourth International Conference on Scour and Erosion.
- 34. Mieszkowski R., Wójcik E., Żmudzin D., Szwarc A., Sosnowska A., Popielski P. 2017. Zastosowanie metody georadarowej do identyfikacji stref erozji dna rzecznego na przykładzie wybranego odcinka doliny Wisły w Warszawie. Przegląd Geologiczny, 65(10/2), 785–789.
- 35. MIKE 21C. 2011. Curvilinear Model for River Morphology, User Guide, DHI Water & Environment.
- 36. Noormets R., Ernstsen V. B., Bartholomä A., Flemming B. W., Hebbeln D. 2006. Implications of bedform dimensions for the prediction of local scour in tidal inlets: a case study from the southern North Sea. Geo-Marine Letters, 26(3), 165–176.
- 37. Polskie Towarzystwo Gleboznawcze. 2008. Klasyfikacja uziarnienia gleb, PTG, http://www.ptg.sggw.pl/uziarnienie.html
- 38. Prendergast L.J., Gavin K. 2014. A review of bridge scour monitoring techniques. Journal of Rock Mechanics and Geotechnical Engineering, 6, 138e149.
- 39. Richardson E.V., Davis S.R. 2001. Evaluating scour at Bridges. 4th Edition, Federal Highway Administration Hydraulic Engineering Circular No. 18, FHWA NHI 01–001.
- 40. Rigby E.H., Boyd M.J., Roso S., Silveri P., Davis A. 2002. Causes and effects of culvert blockage during large storms. [in:] Strecker E.W., Huber W.C. (ed.) Proceedings of 9th International Conference on Urban Drainage (9ICUD). Reston, VA: American Society of Civil Engineers, 1–16.
- 41. Rocznik statystyczny Rzeczpospolitej Polskiej. 2017. GUS, Warszawa.
- 42. Roy S., Sahu A.S. 2017. Road-stream crossing an in-stream intervention to alter channel morphology of headwater streams: case study. Intl. J. River Basin Management, 16(1) DOI: 10.1080/15715124.2017.1365721.
- 43. Saito Y., Yang Z.S., Hori K. 2001. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology, 41, 219–231.
- 44. Sheppard D.M., Odeh M., Glasser T. 2004. Large scale clear-water local pier scour experiments. Journal of Hydraulic Engineering, 130(10), 957–963.
- 45. Sheppard D.M., Renna R. 2010. Bridge scour manual. 605 Suwannee Street. Tallahassee, FL 32399–0450.
- 46. Shotbolt L.A., Thomas A.D., Hutchinson S.M. 2005. The use of reservoir sediments as environmental archives of catchment inputs and atmospheric pollution. Progress in Physical Geography, 29(3), 337–361.
- 47. Syvitski J.P.M., Milliman J.D. 2007. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol, 115, 1–19.
- 48. Szatten D., Babiński Z., Habel M. 2018. Reducing of Water Turbidity by Hydrotechnical Structures on the Example of the Wloclawek Reservoir. Journal of Ecological Engineering, 19(3) 197–205.
- 49. Takara K. 2014. Urban flood risks. J. Flood Risk Manage, 7, 289–290.
- 50. Testa G., Zuccalà D., Alcrudo F., Mulet J., SoaresFrazão S. 2007. Flash flood flow experiment in a simplified urban district. J. Hydraulic Res., 45(supp1), 37–44.
- 51. Turowski J.M., Rickenmann D., Dadson S.J. 2010. The partitioning of the total sediment load of a river into suspended load and bedload: A review of empirical data. Sedimentology, 57, 1126–1146.
- 52. Van Rijn L. 1984. Sediment Transport. Part III: Bed forms and alluvial roughness. Journal of Hydraulic Engineering, 110(12), 1733–1754.
- 53. Vannote, R.L., G.W. Minshall, K.W. Cummins, J.R. Sedell, and C.E. Cushing. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.
- 54. Vörösmarty C.J., Meybeck M., Fekete B., Sharma K., Green P., Syvitski J.P.M. 2003. Anthropogenic sediment retention: major global impact from registered river impoundments. Global and Planetary Change, 39(1–2), 169–190.
- 55. Walling D.E., Fang D. 2003. Recent trends in the suspended sediment loads of the world’s rivers. Global Planet. Change, 39, 111–126.
- 56. Wang H., Tang H., Xu X., Xiao J., Liang D. 2016. Backwater effect of multiple bridges along Huaihe River, China. Proceedings of the ICE Water Management.
- 57. Wren D., Barkdoll B., Kuhnle R., Derrow R. 2000. Field Techniques for Suspended-Sediment Measurement. Journal of Hydraul. Eng., 126(2), 97–104.
- 58. Zheng S., Xu Y., Cheng H., Wang B. 2018. Assessment of bridge scour in the lower, middle, and upper Yangtze River estuary with riverbed sonar profiling techniques, Environ Monit Assess. 190: 15, https://doi.org/10.1007/s10661–017–6393–5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d209fe9d-9b25-4439-a9f9-a8ed8d1abc7a