PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polymer-bonded secondary explosives

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Kruszące materiały wybuchowe z lepiszczem polimerowym
Języki publikacji
EN
Abstrakty
EN
In this paper, a review of the available literature on physical and explosive properties of explosive compositions containing a secondary explosive and a polymer binder (PBX) is presented. The review focused on an analysis of the properties of compositions containing mostly synthetic polymers. The review showed that, at the moment, the most commonly used composition is a hexogen-based explosive bonded with a chemically cross-linked hydroxyl-terminated polybutadiene. The use of energetic polymers in PBX compositions was observed only in the experimental systems tested on a laboratory scale. The most popular methods of forming compositions include pressing a previously phlegmatized explosive or chemical cross-linking of the composition in the projectile shell. Compositions which can be formed and reloaded using injection machines are known, but due to many limitations, the method is not widely used.
PL
Wykonano przegląd literatury dotyczący właściwości fizycznych i parametrów detonacyjnych kompozycji składających się z kruszących materiałów wybuchowych oraz lepiszcza polimerowego (PBX). Skupiono się na analizie właściwości kompozycji zawierających głównie polimery syntetyczne. Zauważono, że współcześnie najczęściej stosowane są kompozycje na bazie heksogenu związanego za pomocą sieciowanego chemiczne polibutadienu z terminalnymi grupami hydroksylowymi. Zastosowanie polimerów energetycznych w kompozycjach PBX odnotowano tylko w układach doświadczalnych testowanych w skali nie większej niż laboratoryjna. Najpopularniejsze metody formowania kompozycji to prasowanie uprzednio sflegmatyzowanego materiału wybuchowego lub sieciowanie chemiczne kompozycji w skorupie pocisku. Znane są mieszaniny, które można formować i elaborować za pomocą wtryskarek, ale ze względu na liczne ograniczenia ta metoda nie zyskała większej popularności.
Rocznik
Tom
Strony
5--16
Opis fizyczny
Bibliogr. 40 poz., tab
Twórcy
  • Military University of Technology, Faculty of Advanced Technologies and Chemistry, 2 gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
Bibliografia
  • [1] Military Explosives, Department of the Army Technical Manual. Headquarters, Department of the Army, TM9-1300-214, USA, 1984.
  • [2] Ahmad S.R., Cartwright M. Laser Ignition of Energetic Materials. John Wiley & Sons, 2015.
  • [3] van der Steen A., Verbeek R. Initiation and Detonation of RDX and HMX HTPB-Based Plastic-Bonded Explosives. Propellants Explos. Pyrotech. 1990, 15: 19-21.
  • [4] Nougez B., Mahe B., Vignaud P.O. Cast PBX Related Technologies for IM Shells and Warheads. Sci. Tech. Energ. Mater. 2009, 70(6): 135-139.
  • [5] Chapman R., Young K., Baldwin L., Nelson A., Hoang H., Merritt A., Carter J. Self-Remediating Energetic Fills Based on Cyclic Dinitroureas. Report WP2147, China Lake, USA, 2017.
  • [6] Dube P. Development of Novel Environmentally Sustainable Binders for Energetic Formulations. Report WP-2407, Centerbrook, USA, 2015.
  • [7] Burnham A.K., Fried L.E., Richardson B. Kinetics of PBX9404 Aging. Report W-7405-Eng-48, LLNL, USA, 2006.
  • [8] Willcox W., Padfield J., McAteer D. Demonstration of 1-Nitramino-2,3-dinitroxypropane as an Energetic Plasticiser Component in an HMX-based PBX. Insensitive Munitions and Energetic Materials Technology Symp. Las Vegas, USA, 2012.
  • [9] Millett J.C.F., Taylor P., Roberts A., Appleby-Thomas G. The Strength of Two HMX Based Plastic Bonded Explosives During One Dimensional Shock Loading. J. Dyn. Behav. Mater. 2017, 3(1): 100-109.
  • [10] James E. The Development of Plastic Bonded Explosives. Report UCRL-12438-T, Lawrence Radiation Livermore Laboratory, CL, USA, 1965.
  • [11] Hamshere B.L., Lochert I.J., Dexter R.M. Evaluation of PBXN-109: the Explosive Fill for the Penguin Anti-Ship Missile Warhead. Defence Science and Technology Organisation, Technical Report DSTOTR-1471, Australia, 2003.
  • [12] Castiglia M. Application of PBX Technology to Improve IM Response. Explosive Safety Management and Risk Analysis Symp. Ammunition Technology, Rome, Italy, 2016.
  • [13] Sandusky H.W. Shock Sensitivity of PBXN-109 When Containing Different RDX Fills without and with Aging. Naval Surface Warfare Center, Indian Head, Report IHTR 3217, 2010.
  • [14] Hydroxyl-Terminated Polybutadiene Resins and Derivatives – Poly bd® and Krasol®. Product Bulletin, Total Cray Valley, 2016, https://www.crayvalley.com/docs/technical-paper/cray_valley_poly-bd-krasol-prod-bulletin.pdf [retrevied 18.05.2021].
  • [15] Lima V., Pelissoli N., Dullius J., Ligabue R., Einloft S. Kinetic Study of Polyurethane Synthesis using Different Catalytic Systems of Fe, Cu, Sn, and Cr. J. Appl. Polym. Sci. 2010, 115: 1797-1802.
  • [16] Hatch R., Mileham M., Braithwaite P., Lee K.E. Characterization and Comparison of a High Performance CL-20 Explosive. Report ARDEC 2010-361, INIT233, 2010.
  • [17] Kent R. Cast PBX B2238 for Small-Calibre High Perforrnance Insensitive Munitions. Propellants Explos. Pyrotech. 1997, 22: 65-70.
  • [18] Hall S., Knowlton G.D. Development, Characterization and Testing of High Blast Thermobaric Compositions. Proc. 31st Int. Pyrotechnic Seminar, Fort Collins, USA, 2004, 663-678.
  • [19] Elbeih A., Wafy T.Z., Elshenawy T. Performance and Detonation Characteristics of Polyurethane Matrix Bonded Attractive Nitramines. Cent. Eur. J. Energ. Mater. 2017, 14(1): 77-89.
  • [20] Wang J., An Ch., Li G., Liang L., Xu W., Wen K. Preparation and Performances of Castable HTPB/CL-20 Booster Explosives. Propellants Explos. Pyrotech. 2011, 36: 34-41.
  • [21] Vadhe P.P., Manickam S., Rahujade N., Kondra A., Prasad U., Sinha R. Studies on Tungsten Based High Density Cast Polymer Bonded Explosive (PBX) Formulations. Cent. Eur. J. Energ. Mater. 2015, 12(3): 497-506.
  • [22] Baker J.J. Thermobaric Explosives, Articles of Manufacture, and Methods Comprising the Same. Patent US 7807000, 2010.
  • [23] Bocksteiner G., Whelan D. The Effect of Ageing on PBXW-115, PBXN-103 (Aust.) and 105. Defence Science and Technology Organisation, Report DSTO-TR-0228, Australia, 1995.
  • [24] Antić G., Džingalašević V., Stanković M., Borković Z. Explosive Characteristics of Cast PBX Based on HMX, Ammonium Perchlorate and Aluminium. Sci. Tech. Rev. 2004, 54(3-4): 38-43.
  • [25] Kumar A., Rao V.B., Sinha R.K., Rao A.S. Evaluation of Plastic Bonded Explosive (PBX) Formulations Based on RDX, Aluminum, and HTPB for Underwater Applications. Propellants Explos. Pyrotech. 2010, 35: 359-364.
  • [26] Gong F., Guo H., Zhang J., Shen Ch., Lin C., Zeng Ch., Liu S. Highly Thermal Stable TATB-based Aluminized Explosives Realizing Optimized Balance between Thermal Stability and Detonation Performance. Propellants Explos. Pyrotech. 2017, 42: 1424-1430.
  • [27] Vadhe P., Pawar R., Sinha R., Asthana S., Rao S.A. Cast Aluminized Explosives (Review). Combust. Explos. Shock Waves 2008, 44(4): 461-477.
  • [28] Provatas A. Formulation and Performance Studies of Polymer Bonded Explosives (PBX) Containing Energetic Binder Systems. Part.1. Defence Science and Technology Organisation, Report DSTOTR-1397, Australia, 2003.
  • [29] Lind C.D. Techniques for Injection Loading of PBXC-303 Explosive. Naval Weapons Center, Report AD/A-001 678, China Lake, CL, USA, 1974.
  • [30] Kovlev S., Tsonev T. Solid State Fuel-air Explosives with Enhanced Power and Stability. Proc. 46th Int. Annual Conf. of ICT, Karlsruhe, Germany, 2015.
  • [31] Tsonev T., Kovlev S. Thermobaric Composition Based on Polyoxane Polymers. (in Bulgarian) Patent BG 111270(A) 2013.
  • [32] Tsonev T., Kovlev S. Thermo-barium Composition Based on Polysilicon Polymer Matrix Included in the Composition of Explosive Substances. (in Bulgarian) Patent BG 111636(A), 2015.
  • [33] Tsonev T., Kovlev S. Underwater Explosive Based on Aryl/Alkyl Polysiloxane Polymer Matrix with Explosive Substances in the Composition. (in Bulgarian) Patent BG 111985(A), 2016.
  • [34] Zalewski K., Chyłek Z., Trzciński W. Studies on the Properties of a Putty-like Explosive with a Silicone Binder. Cent. Eur. J. Energ. Mater. 2021, 18(1): 112-123.
  • [35] Elbeih A., Zeman S., Jungova M., Akstein Z. Effect of Different Polymeric Matrices on the Sensitivity and Performance of Interesting Cyclic Nitramines. Cent. Eur. J. Energ. Mater. 2012, 9(2): 131-138.
  • [36] Jangid S., Singh M., Solanki V., Talawar M., Nath T., Sinha R., Asthana S. 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX)-Based Sheet Explosive Formulation with a Hybrid Binder System. Propellants Explos. Pyrotech. 2016, 41: 377-382.
  • [37] Joseph M.D., Jangid S.K., Satpute R.S., Polke B.G., Nath T., Asthana S.N., Rao A.S. Studies on Advanced RDX/TATB Based Low Vulnerable Sheet Explosives with HTPB Binder. Propellants Explos. Pyrotech. 2009, 34: 326-330.
  • [38] Nath T., Asthana S.N., Gharia J.S. Studies on RDX Based Sheet Explosives with EVA and Estane Binders. Theory and Practices of Energetic Materials Vol. II, Shenzhen, Guangdong, China, 1997, 87-90.
  • [39] Villar L., Cicaglioni T., Diniza M., Takahashi M., Rezende L. Thermal Aging of HTPB/IPDI-based Polyurethane as a Function of NCO/OH Ratio. Mater. Res. 2011, 14(3): 372-375.
  • [40] Yuan S., Luo Y. Mechanical Properties of HTPE/Bu-NENA Binder and the Kinetics of Bu-NENA Evaporation. Cent. Eur. J. Energ. Mater. 2020, 17(1): 119-141.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d208522d-5b35-43ed-9b87-93a22cec84c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.