PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mikroglony najczęściej wykorzystywane w przemyśle rolno-spożywczym

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Microalgae most commonly used in the agricultural and food industry
Języki publikacji
PL
Abstrakty
PL
Spirulina i chlorella należą do mikroglonów (mikroskopijnych organizmów fotosyntetyzujących) najczęściej uprawianych w akwakulturach i wykorzystywanych w przemyśle rolno-spożywczym. Obydwa glony charakteryzują się wysoką zawartością białka (do 60% chlorella i do 70% spirulina), ponadto zawierają w składzie także kwasy tłuszczowe, witaminy, minerały i barwniki. Z tego względu, a także w związku z panującą obecnie modą na zdrowe odżywianie, produkty zawierające w swym składzie spirulinę, chlorellę lub ich ekstrakty są w ostatnich latach coraz bardziej popularne. Te mikroglony są powszechnie wykorzystywane jako dodatki do pasz dla różnych gatunków zwierząt hodowlanych oraz w karmach dla ryb, natomiast ich ekstrakty są stosowane m.in. jako nawozy w rolnictwie ekologicznym i biostymulatory.
EN
Spirulina and chlorella are among the microalgae most commonly cultivated in aquaculture as well as used in the agriculture and food industry. Both algae are characterized by a high protein content (up to 60% chlorella and up to 70% spirulina), and also contain fatty acids, vitamins, minerals and dyes. For this reason, and in connection with the current trend for healthy eating, products containing spirulina, chlorella or their extracts have become increasingly popular in recent years. These microalgae are commonly used as feed additives for various species of farm animals and in fish feeds, while their extracts are used e.g. as fertilizers in organic farming and biostimulators.
Twórcy
autor
  • Zakład Gleboznawstwa, Chemii Środowiska i Hydrologii
  • Zakład Ekologii i Ochrony Środowiska, Uniwersytet Rzeszowski
Bibliografia
  • 1. Abd El-Hady A.M., Elghalid O.A., Elnaggar A.S., Abd El-khalek E. 2022. Growth performance and physiological status evaluation of Spirulina platensis algae supplementation in broiler chicken diet. Livestock Science. 263. 105009.
  • 2. Abdulqader G., Barsanti L., Tredici M.R. 2000. Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage among the Kanembu. J. Appl. Phycol. 12. 493-498.
  • 3. Ahsan M., Habib B., Parvin M., Huntington T.C., Hasan M.R. 2008. A review on culture, production and use of spirulina as food for humans and feeds for domestic animals and fish. FAO Fisheries and Aquaculture Circular. 1034. 33 pp.
  • 4. AlFadhly N.K.Z., Alhelfi N., Altemimi A.B., Verma D.K., Cacciola F., Narayanankutty A. 2022. Trends and technological advancements in the possible food applications of Spirulina and their health benefits: a review. Molecules. 27. 5584.
  • 5. Al-Yahyaey F., Shaat I., Hall E., Bush R.D. 2023. Effect of Spirulina platensis supplementation on growth, performance and body conformation of two Omani goat breeds. Animal Production Science. 63. 133-141.
  • 6. Alghonaim A.A., Alqahtani M.F., Al-Garadi M.A., Alghonaim A.A., Alqahtani M.A., Al-Garadi M.A., Suliman G.M., Al-Baadani H.H., AL-Badwi M.A., Abdelrahman M.M., Alowaimer A.N., Khan R.U., Alhidary I.A. 2022. Effects of different levels of Spirulina (Arthrospira platensis) supplementation on productive performance, nutrient digestibility, blood metabolites, and meat quality of growing Najdi lambs. Trop. Anim. Health Prod. 54. 124.
  • 7. Ali Lila K.M, Mostafa S.M. 2009. Evaluation of potassium humate and Spirulina platensis as bio-organic fertilizer for sesame plants grown under salinity stress. Egypt. J. Agric. Res. 87(1). 369-388.
  • 8. Ali S.K., Saleh A.M. 2012. Spirulina – an overview. International journal of Pharmacy and Pharmaceutical Sciences. 4(3). 9-15.
  • 9. Andrade L.M., Andrade C.J., Dias M., Nascimento C.A.O., Mendes M.A. 2018. Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Process Technol. 6 (1). 45-58.
  • 10. Agnol L.D., Neves R.M., Maraschin M., Moura S., Ornaghi Jr H.L., Dias F.T.G., Bianchi O. 2021. Green synthesis of Spirulina – based carbon dots for stimulating agricultural plant growth. Sustainable Materials and Technologies. 30. e00347.
  • 11. Arahou F., Lijassi I., Wahby A., Rhazi L., Arahou M., Wahby I. 2022. Spirulina-Based Biostimulants for Sustainable Agriculture: Yield Improvement and Market Trends. BioEnergy Research. 1-16.
  • 12. Aung K.L.N. 2011. Effect of Spirulina biofertilizer suspension on growth and yield of Vigna radiata (L.) Wilczek. Univ. Res. J. 4 (1). 351-363.
  • 13. Bazarnova J., Nilova L., Trukhina E., Bernavskaya M., Smyatskaya Y., Aktar T. 2021. Use of microalgae biomass for fortification of food products from grain. Foods. 10. 3018. doi: 10.3390/foods10123018.
  • 14. Belay A. 1997. Mass culture of Spirulina outdoors – The Earthrise Farms experience. [In:] Vonshak A., (ed.) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor and Francis. London. pp. 131-158.
  • 15. Bito T., Okumura E., Fujishima M., Watanabe F. 2020. Potential of Chlorella as a dietary supplement to promote human health. Nutrients. 12. 2524. doi:10.3390/nu12092524.
  • 16. Boskovic Cabrol M., Martins J.C., Malhão L.P., Alves S.P., Bessa R.J.B., Almeida A.M., Raymundo A., Lordelo M. 2022. Partial replacement of soybean meal with Chlorella vulgaris in broiler diets influences performance and improves breast meat quality and fatty acid composition. Poultry Science. 101. 101955. doi.org/10.1016/j.psj.2022.101955.
  • 17. Boukid F., Castellari M. 2022. Food and beverages containing algae and derived ingredients launched in the market from 2015 to 2019: a front-of-pack labeling perspective with a special focus on Spain. Foods. 10. 173. doi.org/10.3390/foods10010173.
  • 18. Brennan L., Owende P. 2010. Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 14. 557-77.
  • 19. Capelli B., Cysewski G.R. 2010. Potential health benefits of spirulina microalgae. A review of the existing literature. Nutrafoods. 9 (2). 19-26.
  • 20. Caporgno M.P., Mathys A. 2018. Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition. 5. 58.
  • 21. Carcea M., Sorto M., Batello C., Narducci V., Aguzzi A., Azzini E., Fantauzzi P., Finotti E., Gabrielli, P., Galli V., Gambelli L., Maintha K. M., Namba F., Ruggeri S., Turfani V. 2015. Nutritional characterization of traditional and improved dihé , alimentary bluegreen algae from the lake Chad region in Africa. Food Sci. Technol. 62. 753-763.
  • 22. Chojnacka K., Saeid A., Michalak I. 2012. Możliwości zastosowania biomasy alg w rolnictwie. Chemik. 66 (11). 1235-1248.
  • 23. Coelho D., Pestana J., Almeida J.M., Alfaia C.M., Fontes C.M.G.A., Moreira O., Prates J.A.M. 2020. A high dietary incorporation level of Chlorella vulgaris improves the nutritional value of pork fat without impairing the performance of finishing pigs. Animals. 10. 2384. doi:10.3390/ani10122384.
  • 24. Coronado-Reyes J.A., Salazar-Torres J.A., Juárez-Campos B., González-Hernández J.C. 2022. Chlorella vulgaris, a microalgae important to be used in biotechnology: a review. Food Science and Technology. 42. e37320. DOI: https://doi.org/10.1590/fst.37320.
  • 25. Credence Research. Algae Products Market By Application (Nutraceuticals, Food & Feed Supplements, Pharmaceuticals, Paints & Coatings, Pollution Control, Others) – Growth, Future Prospects & Competitive Analysis, 2023. [dok. elektr.: https://www.credenceresearch.com/report/algae-products-market data wejścia 20.02.2023].
  • 26. Dantas D.M.M., Cahu´ T.B., Oliveira C.Y.B., Abadie-Guedes R., Roberto N.A., Santana W.M., i in. 2021. Chlorella vulgaris functional alcoholic beverage: effect on propagation of cortical spreading depression and functional properties. PLoS ONE. 16 (8). e0255996. doi.org/10.1371/journal.pone.0255996.
  • 27. Dineshkumar R., Sharmila Devi, N., Priya Lakshmi V., Ahamed Rasheeq A. 2021. Biofertilizer and biostimulants properties of the green microalgae Chlorella vulgaris on tomato (Lycopersicon esculentum Mill L.). Eur. Exp. Bio. 11 (5). 3632. pp. 1-9.
  • 28. EFSA, https://webgate.ec. europa.eu/fip/novel_food_catalogue/ [data wejścia: 29.01.2023].
  • 29. Enzing C., Ploeg M., Barbosa M., Sijtsma L. 2014. Microalgae-based products for the food and feed sector: An outlook for Europe. JRC Sci. policy Rep. 19-37. doi:10.2791/3339.
  • 30. European Commission. Key points of Directive 2000/13/ EC.2013. http://ec.europa.eu/food/food/labellingnutrition/ foodlabelling/index_en.htm.
  • 31. Faheed F.A., Fattah Z.A-E. 2008. Effect of Chlorella vulgaris as biofertilizer on growth parameters and metabolic aspects of lettuce plant. J. Agri. Soc. Sci. 4. 165-169.
  • 32. Farrar W.V. 1966. Tecuitlatl; a glimpse of Aztec food technology. Nature. 211. 341-342.
  • 33. Fernández-Ríos A., Laso J., Hoehn D., Amo-Setién F.J., Abajas -Bustillo R., Ortego C., Fullana-Palmer P., Bala A., Batlle-Bayer L., Balcells M., Puig R., Aldaco R., Margallo M. 2022. A critical review of superfoods from a holistic nutritional and environmental approach. J. Clean Prod. 379. 134491.
  • 34. Fradique M´., Batista A.P., Nunes M.C., Gouveia L., Bandarra N.M., Raymundo A. 2010. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. J. Sci. Food Agric. 90. 1656-1664.
  • 35. Godlewska K., Michalak I., Pacyga P., Baśladyńska S., Chojnacka K. 2019. Potential applications of cyanobacteria: Spirulina platensis filtrates and homogenates in agriculture. World J. Microbiol. Biotechnol. 35. 80.
  • 36. Gouveia L., Batista A.P., Raymundo A., Bandarra N.M. 2008. Spirulina maxima and Diacronema vlkianum microalgae in vegetable gelled desserts. Nutr. Food Sci. 38. 492-501.
  • 37. Grigorova S, Surdjiiska S, Banskalieva V, Dimitrov G. 2006. The effect of biomass from green algae of Chlorella genus on the biochemical characteristics of table eggs. J. Cent. Eur. Agric. 7 (1). 111-116.
  • 38. Grosshagauer S., Kraemer K., Somoza V. 2020. The true value of Spirulina. Journal of Agricultural and Food Chemistry. 68 (14). 4109-4115.
  • 39. Guccione A., Biondi N., Sampietro G., Rodolfi L., Bassi N., Tredici M.R. 2014. Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnology for Biofuels. 7 (84). 1-12.
  • 40. Hedegaard R., Rokkjær I., Sloth J.J. 2013. Total and inorganic arsenic in dietary supplements based on herbs, other botanicals and algae – a possible contributor to inorganic arsenic exposure. Anal. Bioanal. Chem. 405. 4429-4435.
  • 41. Hegazi A.Z., Mostafa S.S.M., Ahmed H.M.I. 2010. Influence of different cyanobacterial application methods on growth and seed production of common bean under various levels of mineral nitrogen fertilization. Nat. Sci. 8 (11). 183-194.
  • 42. Hernandez H., Nunes M.C., Prista C., Raymundo A. 2022. Innovative and healthier dairy products through the addition of microalgae: a review. Foods. 11. 755. doi.org/10.3390/foods11050755
  • 43. Holman B.W.B., Malau-Aduli A.E.O. 2013. Spirulina as a livestock supplement and animal feed. Journal of Animal Physiology and Animal Nutrition. 97 (4). 615-623.
  • 44. Hyrslova I., Krausova G., Smolova J., Stankova B., Branyik T., Malinska H., Huttl M., Kana A., Doskocil I., Curda, L. 2021. Prebiotic and immunomodulatory properties of the microalga Chlorella vulgaris and its synergistic triglyceride-lowering effect with Bifidobacteria. Fermentation. 7. 125. doi.org/10.3390/fermentation7030125.
  • 45. Jękot B., Muszyńska B., Mastalerz T., Piórecka B. 2014. Spirulina (Arthrospira) – badania nad działaniem leczniczym i jej właściwości prozdrowotne. Farmacja Polska. 70 (11). 607-614.
  • 46. Komárek J., Kaštovský J., Mareš J., Johansen J.R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera). Taxonomic classification of Cyanoprokaryotes (cyanobacterial genera), using a polyphasic approach. Preslia. 86. 295-335.
  • 47. Koyande A.K., Chew K.W., Rambabu K., Tao Y., Chu D.T., Show P.L. 2019. Microalgae: a potential alternative to health supplementation for humans. Food Sci. Hum. Wellness. 8 (1). 16-24.
  • 48. Krępska M., Lasoń-Rydel M., Jagiełło J. 2016. Charakterystyka, właściwości, perspektywy i trudności stosowania niebieskich barwników naturalnych do barwienia produktów spożywczych. Technologia i Jakość Wyrobów. 61. 63-68.
  • 49. Kuo C.-M., Sun Y.-L., Lin C.-H., Lin C.-H., Wu H.-T., Lin C.-S. 2021. Cultivation and biorefinery of microalgae (Chlorella sp.) for producing biofuels and other byproducts: a review. Sustainability. 13. 13480. doi.org/10.3390/su132313480
  • 50. Madeira M.S., Cardoso C., Lopes P.A., Coelho D., Afonso C., Bandarra N.M., Prates J.A.M. 2017. Microalgae as feed ingredients for livestock production and meat quality: a review. Livestock Science. 205. 111-121.
  • 51. Matos Â.P., Novelli E., Tribuzi G. 2022. Use of algae as food ingredient: sensory acceptance and commercial products. Front. Food Sci. Technol. 2. 989801. doi: 10.3389/frfst.2022.989801.
  • 52. Otto J.R., Malau-Aduli A.E.O. 2017. Spirulina platensis (Arthrospira spp.): a potential novel feed source for pasture-based dairy cows. Journal of Fisheries & Livestock Production. 5 (3). 252.
  • 53. Papazi A., Makridis P., Divanach P. 2010. Harvesting Chlorella minutissima using cel coagulants. J. Appl. Phycol. 22. 349-355.
  • 54. Park Y.J., Park J.-E., Truong T.Q., Koo S.Y., Choi J.-H., Kim S.M. 2022. Effect of Chlorella vulgaris on the growth and phytochemical contents of “Red Russian” kale (Brassica napus var. pabularia). Agronomy. 12. 2138. doi.org/10.3390/agronomy12092138.
  • 55. Pliński M., Hindak F. 2010. Flora Zatoki Gdańskiej i wód przyległych cz. 7/1 (Bałtyk Południowy). Zielenice – Chlorophyta (Green Algae). Część pierwsza: Zielenice nitkowate (Prasinophyceae & Chlorophyceae). Wyd. Uniwersytetu Gdańskiego. Gdańsk. pp. 1-240.
  • 56. Rani K., Sandal N., Sahoo P.K. 2018. A comprehensive review on chlorella- its composition, health benefits, market and regulatory scenario. The Pharma Innovation Journal. 7 (7). 584-589.
  • 57. Rozporządzenie Komisji Europejskiej nr 1881/2006 z dnia 19 grudnia 2006 r. ustalające najwyższe dopuszczalne poziomy niektórych zanieczyszczeń w środkach spożywczych. [dok. elektr.: https://eur-lex.europa.eu/legal-content/DE/TXT/HTML/?uri=CELEX:02006R1881-20100701&from=EN, data wejścia 06.02.2023].
  • 58. Rzymski P., Niedzielski P., Kaczmarek N., Jurczak T., Klimaszyk P. 2015. The multidisciplinary approach to safety and toxicity assessment of microalgae-based food supplements following clinical cases of poisoning. Harmful Algae. 46. 34-42.
  • 59. Rzymski P., Budzulak J., Niedzielski P., Klimaszyk P., Proch J., Kozak L., Poniedziałek B. 2018. Essential and toxic elements in commercial microalgal food supplements. Journal of Applied Phycology. 31. 3567-3579.
  • 60. Sani S., Warly L., Żudri F., Novia R., Fadri R.A. 2021. Chlorella vulgaris supplementation as mineral source of zinc and selenium to improve the quality of goat milk as health drink in COVID-19 pandemy. IOP Conf. Ser.: Earth Environ. Sci. 757. 012051. doi:10.1088/1755-1315/757/1/012051.
  • 61. Sasson A. 1997. Microalgal biotechnologies: recent developments and prospects for developing countries. BIOTEC Publication 1 (2542). 11-31.
  • 62. Sikiru A.B., Arangasamy A., Alemede I.C., Egena S.S.A., Bhatta R. 2021. Dietary supplementation effects of Chlorella vulgaris on performances, oxidative stress status and antioxidant enzymes activities of prepubertal New Zealand white rabbits. Bulletin of the National Research Centre. 43 (162). https://doi.org/10.1186/s42269-019-0213-8.
  • 63. Soni R.A., Sudhakar K., Rana R.S. 2017. Spirulina – From growth to nutritional product: a review. Trends in food science & Technology. 69. 157-171.
  • 64. Transparency Market Research 2021, Algae Market Size, Sales, Share and Forecasts by 2031. [dok. elektr.: https://www.transparencymarketresearch.com/algae-market.html. Data wejścia 06.02.2023].
  • 65. UNDESA 2022. World population prospects 2022: summary of results. New York. UNDESA.
  • 66. Widyaningrum D., Prianto A.D. 2021. Chlorella as a source of functional food ingredients: short review. IOP Conf. Ser.: Earth Environ. Sci. 794. 012148. doi:10.1088/1755-1315/794/1/012148
  • 67. Wuang S.C., Khin M.C., Chua P.Q.D., Luo Y.D. 2016. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res. 15. 59-64.
  • 68. Xu W., Gao Z., Qi Z., Qiu M., Peng J.Q., Shao R. 2014. Effect of dietary Chlorella on the growth performance and physiological parameters of Gibel carp, Carassius auratus gibelio. Turk. J. Fish. Aquat. Sci. 14. 53-57.
  • 69. Yarmohammadi S., Hosseini-Ghatar R., Foshati S., Moradi M., Hemati N., Moradi S., Kermani M.A.H., Farzaei M.H., Khan H. 2021. Effect of Chlorella vulgaris on liver function biomarkers: a systematic review and meta-analysis. Clin. Nutr. Res. 10 (1). 83-94.
  • 70. Yaakob Z., Ali E., Zainal A., Mohamad M., Takriff M.S. 2014. An overview: biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res. 21 (1). 6-15.
  • 71. Zdrojewicz Z., Bieżyński B., Krajewski P. 2018. Czy warto jeść algi? Borgis–Medycyna Rodzinna. pp. 72-79.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d207d5ff-bb58-406d-b520-2552dd798699
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.